Time-split Methods for Partial Differential Equations

Time-split Methods for Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher:
ISBN:
Category : Differential equations, Hyperbolic
Languages : en
Pages : 236

Get Book

Book Description
This thesis concerns the use of time-split methods for the numerical solution of time-dependent partial differential equations. Frequently the differential operator splits additively into two or more pieces such that the corresponding subproblems are each easier to solve than the original equation, or are best handled by different techniques. In the time-split method the solution to the original equation is advanced by alternately solving the subproblems. In this thesis a unified approach to splitting methods is developed which simplifies their analysis. Particular emphasis is given to splittings of hyperbolic problems into subproblems with disparate wave speeds. Three main aspects of the method are considered. The first is the accuracy and efficiency of the time-split method relative to unsplit methods. The second topic is stability for split methods. The final topic is the proper specification of boundary data for the intermediate solutions, e.g., the solution obtained after solving only one of the subproblems. The main emphasis is on hyperbolic problems, and the one-dimensional shallow water equations are used as a specific example throughout. The final chapter is devoted to some other applications or the theory. Two-dimensional hyperbolic problems, convection-diffusion equations, and the Peaceman-Rachford ADI method for the heat equation are considered.

Time-split Methods for Partial Differential Equations

Time-split Methods for Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher:
ISBN:
Category : Differential equations, Hyperbolic
Languages : en
Pages : 236

Get Book

Book Description
This thesis concerns the use of time-split methods for the numerical solution of time-dependent partial differential equations. Frequently the differential operator splits additively into two or more pieces such that the corresponding subproblems are each easier to solve than the original equation, or are best handled by different techniques. In the time-split method the solution to the original equation is advanced by alternately solving the subproblems. In this thesis a unified approach to splitting methods is developed which simplifies their analysis. Particular emphasis is given to splittings of hyperbolic problems into subproblems with disparate wave speeds. Three main aspects of the method are considered. The first is the accuracy and efficiency of the time-split method relative to unsplit methods. The second topic is stability for split methods. The final topic is the proper specification of boundary data for the intermediate solutions, e.g., the solution obtained after solving only one of the subproblems. The main emphasis is on hyperbolic problems, and the one-dimensional shallow water equations are used as a specific example throughout. The final chapter is devoted to some other applications or the theory. Two-dimensional hyperbolic problems, convection-diffusion equations, and the Peaceman-Rachford ADI method for the heat equation are considered.

Splitting Methods for Partial Differential Equations with Rough Solutions

Splitting Methods for Partial Differential Equations with Rough Solutions PDF Author: Helge Holden
Publisher: European Mathematical Society
ISBN: 9783037190784
Category : Mathematics
Languages : en
Pages : 238

Get Book

Book Description
Operator splitting (or the fractional steps method) is a very common tool to analyze nonlinear partial differential equations both numerically and analytically. By applying operator splitting to a complicated model one can often split it into simpler problems that can be analyzed separately. In this book one studies operator splitting for a family of nonlinear evolution equations, including hyperbolic conservation laws and degenerate convection-diffusion equations. Common for these equations is the prevalence of rough, or non-smooth, solutions, e.g., shocks. Rigorous analysis is presented, showing that both semi-discrete and fully discrete splitting methods converge. For conservation laws, sharp error estimates are provided and for convection-diffusion equations one discusses a priori and a posteriori correction of entropy errors introduced by the splitting. Numerical methods include finite difference and finite volume methods as well as front tracking. The theory is illustrated by numerous examples. There is a dedicated Web page that provides MATLABR codes for many of the examples. The book is suitable for graduate students and researchers in pure and applied mathematics, physics, and engineering.

Partial Differential Equations

Partial Differential Equations PDF Author: Walter A. Strauss
Publisher: John Wiley & Sons
ISBN: 0470054565
Category : Mathematics
Languages : en
Pages : 467

Get Book

Book Description
Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Iterative Splitting Methods for Differential Equations

Iterative Splitting Methods for Differential Equations PDF Author: Juergen Geiser
Publisher: CRC Press
ISBN: 1439869839
Category : Mathematics
Languages : en
Pages : 325

Get Book

Book Description
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations.In th

Numerical Methods for Partial Differential Equations

Numerical Methods for Partial Differential Equations PDF Author: Sandip Mazumder
Publisher: Academic Press
ISBN: 0128035048
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book

Book Description
Numerical Methods for Partial Differential Equations: Finite Difference and Finite Volume Methods focuses on two popular deterministic methods for solving partial differential equations (PDEs), namely finite difference and finite volume methods. The solution of PDEs can be very challenging, depending on the type of equation, the number of independent variables, the boundary, and initial conditions, and other factors. These two methods have been traditionally used to solve problems involving fluid flow. For practical reasons, the finite element method, used more often for solving problems in solid mechanics, and covered extensively in various other texts, has been excluded. The book is intended for beginning graduate students and early career professionals, although advanced undergraduate students may find it equally useful. The material is meant to serve as a prerequisite for students who might go on to take additional courses in computational mechanics, computational fluid dynamics, or computational electromagnetics. The notations, language, and technical jargon used in the book can be easily understood by scientists and engineers who may not have had graduate-level applied mathematics or computer science courses. Presents one of the few available resources that comprehensively describes and demonstrates the finite volume method for unstructured mesh used frequently by practicing code developers in industry Includes step-by-step algorithms and code snippets in each chapter that enables the reader to make the transition from equations on the page to working codes Includes 51 worked out examples that comprehensively demonstrate important mathematical steps, algorithms, and coding practices required to numerically solve PDEs, as well as how to interpret the results from both physical and mathematic perspectives

Finite Difference Computing with PDEs

Finite Difference Computing with PDEs PDF Author: Hans Petter Langtangen
Publisher: Springer
ISBN: 3319554565
Category : Computers
Languages : en
Pages : 522

Get Book

Book Description
This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations PDF Author: Randall J. LeVeque
Publisher: SIAM
ISBN: 9780898717839
Category : Mathematics
Languages : en
Pages : 356

Get Book

Book Description
This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.

Introductory Finite Difference Methods for PDEs

Introductory Finite Difference Methods for PDEs PDF Author:
Publisher: Bookboon
ISBN: 8776816427
Category :
Languages : en
Pages : 144

Get Book

Book Description


Time-dependent Partial Differential Equations and Their Numerical Solution

Time-dependent Partial Differential Equations and Their Numerical Solution PDF Author: Heinz-Otto Kreiss
Publisher: Birkhäuser
ISBN: 3034882297
Category : Mathematics
Languages : en
Pages : 82

Get Book

Book Description
This book studies time-dependent partial differential equations and their numerical solution, developing the analytic and the numerical theory in parallel, and placing special emphasis on the discretization of boundary conditions. The theoretical results are then applied to Newtonian and non-Newtonian flows, two-phase flows and geophysical problems. This book will be a useful introduction to the field for applied mathematicians and graduate students.

Meshfree Methods for Partial Differential Equations VI

Meshfree Methods for Partial Differential Equations VI PDF Author: Michael Griebel
Publisher: Springer Science & Business Media
ISBN: 3642329799
Category : Computers
Languages : en
Pages : 243

Get Book

Book Description
Meshfree methods are a modern alternative to classical mesh-based discretization techniques such as finite differences or finite element methods. Especially in a time-dependent setting or in the treatment of problems with strongly singular solutions their independence of a mesh makes these methods highly attractive. This volume collects selected papers presented at the Sixth International Workshop on Meshfree Methods held in Bonn, Germany in October 2011. They address various aspects of this very active research field and cover topics from applied mathematics, physics and engineering. ​