Introduction to Optimization Methods and their Application in Statistics

Introduction to Optimization Methods and their Application in Statistics PDF Author: B. Everitt
Publisher: Springer Science & Business Media
ISBN: 9400931530
Category : Science
Languages : en
Pages : 88

Get Book

Book Description
Optimization techniques are used to find the values of a set of parameters which maximize or minimize some objective function of interest. Such methods have become of great importance in statistics for estimation, model fitting, etc. This text attempts to give a brief introduction to optimization methods and their use in several important areas of statistics. It does not pretend to provide either a complete treatment of optimization techniques or a comprehensive review of their application in statistics; such a review would, of course, require a volume several orders of magnitude larger than this since almost every issue of every statistics journal contains one or other paper which involves the application of an optimization method. It is hoped that the text will be useful to students on applied statistics courses and to researchers needing to use optimization techniques in a statistical context. Lastly, my thanks are due to Bertha Lakey for typing the manuscript.

Optimization Techniques in Statistics

Optimization Techniques in Statistics PDF Author: Jagdish S. Rustagi
Publisher: Elsevier
ISBN: 1483295710
Category : Mathematics
Languages : en
Pages : 359

Get Book

Book Description
Statistics help guide us to optimal decisions under uncertainty. A large variety of statistical problems are essentially solutions to optimization problems. The mathematical techniques of optimization are fundamentalto statistical theory and practice. In this book, Jagdish Rustagi provides full-spectrum coverage of these methods, ranging from classical optimization and Lagrange multipliers, to numerical techniques using gradients or direct search, to linear, nonlinear, and dynamic programming using the Kuhn-Tucker conditions or the Pontryagin maximal principle. Variational methods and optimization in function spaces are also discussed, as are stochastic optimization in simulation, including annealing methods. The text features numerous applications, including: Finding maximum likelihood estimates Markov decision processes Programming methods used to optimize monitoring of patients in hospitals Derivation of the Neyman-Pearson lemma The search for optimal designs Simulation of a steel mill Suitable as both a reference and a text, this book will be of interest to advanced undergraduate or beginning graduate students in statistics, operations research, management and engineering sciences, and related fields. Most of the material can be covered in one semester by students with a basic background in probability and statistics. Key Features * Covers optimization from traditional methods to recent developments such as Karmarkars algorithm and simulated annealing * Develops a wide range of statistical techniques in the unified context of optimization * Discusses applications such as optimizing monitoring of patients and simulating steel mill operations * Treats numerical methods and applications Includes exercises and references for each chapter * Covers topics such as linear, nonlinear, and dynamic programming, variational methods, and stochastic optimization

Introduction to Optimization Methods and their Application in Statistics

Introduction to Optimization Methods and their Application in Statistics PDF Author: B. Everitt
Publisher: Springer Science & Business Media
ISBN: 9400931530
Category : Science
Languages : en
Pages : 88

Get Book

Book Description
Optimization techniques are used to find the values of a set of parameters which maximize or minimize some objective function of interest. Such methods have become of great importance in statistics for estimation, model fitting, etc. This text attempts to give a brief introduction to optimization methods and their use in several important areas of statistics. It does not pretend to provide either a complete treatment of optimization techniques or a comprehensive review of their application in statistics; such a review would, of course, require a volume several orders of magnitude larger than this since almost every issue of every statistics journal contains one or other paper which involves the application of an optimization method. It is hoped that the text will be useful to students on applied statistics courses and to researchers needing to use optimization techniques in a statistical context. Lastly, my thanks are due to Bertha Lakey for typing the manuscript.

Optimizing Methods in Statistics

Optimizing Methods in Statistics PDF Author: Jagdish S. Rustagi
Publisher:
ISBN:
Category : Business & Economics
Languages : en
Pages : 514

Get Book

Book Description
Optimizing Methods in Statistics.

Optimizing Methods in Statistics

Optimizing Methods in Statistics PDF Author: Jagdish S. Rustagi
Publisher: Academic Press
ISBN: 1483260348
Category : Mathematics
Languages : en
Pages : 504

Get Book

Book Description
Optimizing Method in Statistics is a compendium of papers dealing with variational methods, regression analysis, mathematical programming, optimum seeking methods, stochastic control, optimum design of experiments, optimum spacings, and order statistics. One paper reviews three optimization problems encountered in parameter estimation, namely, 1) iterative procedures for maximum likelihood estimation, based on complete or censored samples, of the parameters of various populations; 2) optimum spacings of quantiles for linear estimation; and 3) optimum choice of order statistics for linear estimation. Another paper notes the possibility of posing various adaptive filter algorithms to make the filter learn the system model while the system is operating in real time. By reducing the time necessary for process modeling, the time required to implement the acceptable system design can also be reduced One paper evaluates the parallel structure between duality relationships for the linear functional version of the generalized Neyman-Pearson problem, as well as the duality relationships of linear programming as these apply to bounded-variable linear programming problems. The compendium can prove beneficial to mathematicians, students, and professor of calculus, statistics, or advanced mathematics.

Perturbations, Optimization, and Statistics

Perturbations, Optimization, and Statistics PDF Author: Tamir Hazan
Publisher: MIT Press
ISBN: 0262549948
Category : Computers
Languages : en
Pages : 413

Get Book

Book Description
A description of perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees. In nearly all machine learning, decisions must be made given current knowledge. Surprisingly, making what is believed to be the best decision is not always the best strategy, even when learning in a supervised learning setting. An emerging body of work on learning under different rules applies perturbations to decision and learning procedures. These methods provide simple and highly efficient learning rules with improved theoretical guarantees. This book describes perturbation-based methods developed in machine learning to augment novel optimization methods with strong statistical guarantees, offering readers a state-of-the-art overview. Chapters address recent modeling ideas that have arisen within the perturbations framework, including Perturb & MAP, herding, and the use of neural networks to map generic noise to distribution over highly structured data. They describe new learning procedures for perturbation models, including an improved EM algorithm and a learning algorithm that aims to match moments of model samples to moments of data. They discuss understanding the relation of perturbation models to their traditional counterparts, with one chapter showing that the perturbations viewpoint can lead to new algorithms in the traditional setting. And they consider perturbation-based regularization in neural networks, offering a more complete understanding of dropout and studying perturbations in the context of deep neural networks.

Optimization for Data Analysis

Optimization for Data Analysis PDF Author: Stephen J. Wright
Publisher: Cambridge University Press
ISBN: 1316518981
Category : Computers
Languages : en
Pages : 239

Get Book

Book Description
A concise text that presents and analyzes the fundamental techniques and methods in optimization that are useful in data science.

Process Optimization

Process Optimization PDF Author: Enrique del Castillo
Publisher: Springer Science & Business Media
ISBN: 0387714359
Category : Mathematics
Languages : en
Pages : 462

Get Book

Book Description
This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.

Statistical Inference Via Convex Optimization

Statistical Inference Via Convex Optimization PDF Author: Anatoli Juditsky
Publisher: Princeton University Press
ISBN: 0691197296
Category : Mathematics
Languages : en
Pages : 655

Get Book

Book Description
This authoritative book draws on the latest research to explore the interplay of high-dimensional statistics with optimization. Through an accessible analysis of fundamental problems of hypothesis testing and signal recovery, Anatoli Juditsky and Arkadi Nemirovski show how convex optimization theory can be used to devise and analyze near-optimal statistical inferences. Statistical Inference via Convex Optimization is an essential resource for optimization specialists who are new to statistics and its applications, and for data scientists who want to improve their optimization methods. Juditsky and Nemirovski provide the first systematic treatment of the statistical techniques that have arisen from advances in the theory of optimization. They focus on four well-known statistical problems—sparse recovery, hypothesis testing, and recovery from indirect observations of both signals and functions of signals—demonstrating how they can be solved more efficiently as convex optimization problems. The emphasis throughout is on achieving the best possible statistical performance. The construction of inference routines and the quantification of their statistical performance are given by efficient computation rather than by analytical derivation typical of more conventional statistical approaches. In addition to being computation-friendly, the methods described in this book enable practitioners to handle numerous situations too difficult for closed analytical form analysis, such as composite hypothesis testing and signal recovery in inverse problems. Statistical Inference via Convex Optimization features exercises with solutions along with extensive appendixes, making it ideal for use as a graduate text.

Statistical Optimization for Geometric Computation

Statistical Optimization for Geometric Computation PDF Author: Kenichi Kanatani
Publisher: Courier Corporation
ISBN: 0486443086
Category : Mathematics
Languages : en
Pages : 548

Get Book

Book Description
This text for graduate students discusses the mathematical foundations of statistical inference for building three-dimensional models from image and sensor data that contain noise--a task involving autonomous robots guided by video cameras and sensors. The text employs a theoretical accuracy for the optimization procedure, which maximizes the reliability of estimations based on noise data. The numerous mathematical prerequisites for developing the theories are explained systematically in separate chapters. These methods range from linear algebra, optimization, and geometry to a detailed statistical theory of geometric patterns, fitting estimates, and model selection. In addition, examples drawn from both synthetic and real data demonstrate the insufficiencies of conventional procedures and the improvements in accuracy that result from the use of optimal methods.

Optimization

Optimization PDF Author: Kenneth Lange
Publisher: Springer Science & Business Media
ISBN: 1475741820
Category : Mathematics
Languages : en
Pages : 260

Get Book

Book Description
Lange is a Springer author of other successful books. This is the first book that emphasizes the applications of optimization to statistics. The emphasis on statistical applications will be especially appealing to graduate students of statistics and biostatistics.