INTRODUCTION TO LINEAR AND DIGITAL CONTROL SYSTEMS

INTRODUCTION TO LINEAR AND DIGITAL CONTROL SYSTEMS PDF Author: ARUN K. GHOSH
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120331242
Category : Technology & Engineering
Languages : en
Pages : 600

Get Book

Book Description
This book presents comprehensive coverage of linear control systems along with an introduction to digital control systems. It is designed for undergraduate courses in control systems taught in departments of electrical engineering, electronics and instrumentation, electronics and communication, instrumentation and control, and computer science and engineering. The text discusses the important concepts of control systems, transfer functions and system components. It describes system stability, employing the Hurwitz–Routh stability criterion, root locus technique, Bode plot, and polar and Nyquist plots. In addition, this student-friendly book features in-depth coverage of controllers, compensators, state-space modelling and discrete time systems. KEY FEATURES •Includes a brief tutorial on MATLAB in an appendix to help students learn how to use it for the analysis and design of control systems. •Provides an abundance of worked-out examples and review questions culled from university examination papers. •Gives answers to selected chapter-end questions at the end of the book.

INTRODUCTION TO LINEAR AND DIGITAL CONTROL SYSTEMS

INTRODUCTION TO LINEAR AND DIGITAL CONTROL SYSTEMS PDF Author: ARUN K. GHOSH
Publisher: PHI Learning Pvt. Ltd.
ISBN: 9788120331242
Category : Technology & Engineering
Languages : en
Pages : 600

Get Book

Book Description
This book presents comprehensive coverage of linear control systems along with an introduction to digital control systems. It is designed for undergraduate courses in control systems taught in departments of electrical engineering, electronics and instrumentation, electronics and communication, instrumentation and control, and computer science and engineering. The text discusses the important concepts of control systems, transfer functions and system components. It describes system stability, employing the Hurwitz–Routh stability criterion, root locus technique, Bode plot, and polar and Nyquist plots. In addition, this student-friendly book features in-depth coverage of controllers, compensators, state-space modelling and discrete time systems. KEY FEATURES •Includes a brief tutorial on MATLAB in an appendix to help students learn how to use it for the analysis and design of control systems. •Provides an abundance of worked-out examples and review questions culled from university examination papers. •Gives answers to selected chapter-end questions at the end of the book.

Introduction to Linear Control Systems

Introduction to Linear Control Systems PDF Author: Yazdan Bavafa-Toosi
Publisher: Academic Press
ISBN: 012812749X
Category : Technology & Engineering
Languages : en
Pages : 1135

Get Book

Book Description
Introduction to Linear Control Systems is designed as a standard introduction to linear control systems for all those who one way or another deal with control systems. It can be used as a comprehensive up-to-date textbook for a one-semester 3-credit undergraduate course on linear control systems as the first course on this topic at university. This includes the faculties of electrical engineering, mechanical engineering, aerospace engineering, chemical and petroleum engineering, industrial engineering, civil engineering, bio-engineering, economics, mathematics, physics, management and social sciences, etc. The book covers foundations of linear control systems, their raison detre, different types, modelling, representations, computations, stability concepts, tools for time-domain and frequency-domain analysis and synthesis, and fundamental limitations, with an emphasis on frequency-domain methods. Every chapter includes a part on further readings where more advanced topics and pertinent references are introduced for further studies. The presentation is theoretically firm, contemporary, and self-contained. Appendices cover Laplace transform and differential equations, dynamics, MATLAB and SIMULINK, treatise on stability concepts and tools, treatise on Routh-Hurwitz method, random optimization techniques as well as convex and non-convex problems, and sample midterm and endterm exams. The book is divided to the sequel 3 parts plus appendices. PART I: In this part of the book, chapters 1-5, we present foundations of linear control systems. This includes: the introduction to control systems, their raison detre, their different types, modelling of control systems, different methods for their representation and fundamental computations, basic stability concepts and tools for both analysis and design, basic time domain analysis and design details, and the root locus as a stability analysis and synthesis tool. PART II: In this part of the book, Chapters 6-9, we present what is generally referred to as the frequency domain methods. This refers to the experiment of applying a sinusoidal input to the system and studying its output. There are basically three different methods for representation and studying of the data of the aforementioned frequency response experiment: these are the Nyquist plot, the Bode diagram, and the Krohn-Manger-Nichols chart. We study these methods in details. We learn that the output is also a sinusoid with the same frequency but generally with different phase and magnitude. By dividing the output by the input we obtain the so-called sinusoidal or frequency transfer function of the system which is the same as the transfer function when the Laplace variable s is substituted with . Finally we use the Bode diagram for the design process. PART III: In this part, Chapter 10, we introduce some miscellaneous advanced topics under the theme fundamental limitations which should be included in this undergraduate course at least in an introductory level. We make bridges between some seemingly disparate aspects of a control system and theoretically complement the previously studied subjects. Appendices: The book contains seven appendices. Appendix A is on the Laplace transform and differential equations. Appendix B is an introduction to dynamics. Appendix C is an introduction to MATLAB, including SIMULINK. Appendix D is a survey on stability concepts and tools. A glossary and road map of the available stability concepts and tests is provided which is missing even in the research literature. Appendix E is a survey on the Routh-Hurwitz method, also missing in the literature. Appendix F is an introduction to random optimization techniques and convex and non-convex problems. Finally, appendix G presents sample midterm and endterm exams, which are class-tested several times.

INTRODUCTION TO CONTROL SYSTEMS

INTRODUCTION TO CONTROL SYSTEMS PDF Author: GHOSH, ARUN K.
Publisher: PHI Learning Pvt. Ltd.
ISBN: 8119364198
Category : Technology & Engineering
Languages : en
Pages : 554

Get Book

Book Description
The third edition of this text focuses on the basic concepts of control systems as before. It presents them in a succinct style and with about 400 worked-out examples. The study of control systems basically entails a knowledge of different kinds of systems that are presented via their transfer functions in the time domain and frequency domain. A major part of this study involves a knowledge of stability of systems in those domains. But then, a knowledge of study of multiple input multiple output (MIMO) systems as well as digital systems is also necessary. All these have been dealt with in lucid, student-friendly manner and with the assumption that the student has only HS-level mathematics background. NEW TO THIS EDITION • Quick reading guide. • Introduction of relevant mathematics wherever needed. • Emphasis on MCQs, which demand knowledge of intricate concepts. • Graphs and diagrams to illustrate concepts. TARGET AUDIENCE • B.Tech Electrical Engineering • B.Tech Electronics and Communication Engineering • B.Tech Instrumentation and Control Engineering • B.Tech Applied Electronics and Instrumentation Engineering • B.Tech Computer Science and Engineering

Digital Control Systems

Digital Control Systems PDF Author: R. Isermann
Publisher: Springer Science & Business Media
ISBN: 3662023199
Category : Technology & Engineering
Languages : en
Pages : 583

Get Book

Book Description
The great advances made in large-scale integration of semiconductors, the resulting cost-effective digital processors and data storage devi ces, and the development of suitable programming techniques are all having increasing influence on the techniques of measurement and con trol and on automation in general. The application of digital techni ques to process automation started in about 1960 when the first process computer was installed. From about 1970 computers have become standard equipment for the automation of industrial processes, connected on-line in open or closed loop. The annual increase of installed process compu ters in the last decade was about 20- 30 %. The cost of hardware has shown a tendency to decrease, whereas the relative cost of user soft ware has tended to increase. Because of the relatively high total cost, the first phase of digital computer application to process control is characterized by the centralization of many functions in a single (though sometimes in several) process computer. Such centralization does not permit full utilization of the many advantages of digital signal processing and rapid economic pay-off as analog back-up systems or parallel standby computers must often be provided to cover possible breakdowns in the central computer. In 1971 the first microprocessors were marketed which, together with large-scale integrated semiconductor memory units and input/output mo dules, can be assembled into more cost-effective process microcompu ters.

Digital Control Engineering

Digital Control Engineering PDF Author: M. Sami Fadali
Publisher: Academic Press
ISBN: 012398324X
Category : Computers
Languages : en
Pages : 600

Get Book

Book Description
Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital controls in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer. Extensive Use of computational tools: Matlab sections at end of each chapter show how to implement concepts from the chapter Frees the student from the drudgery of mundane calculations and allows him to consider more subtle aspects of control system analysis and design An engineering approach to digital controls: emphasis throughout the book is on design of control systems. Mathematics is used to help explain concepts, but throughout the text discussion is tied to design and implementation. For example coverage of analog controls in chapter 5 is not simply a review, but is used to show how analog control systems map to digital control systems Review of Background Material: contains review material to aid understanding of digital control analysis and design. Examples include discussion of discrete-time systems in time domain and frequency domain (reviewed from linear systems course) and root locus design in s-domain and z-domain (reviewed from feedback control course) Inclusion of Advanced Topics In addition to the basic topics required for a one semester senior/graduate class, the text includes some advanced material to make it suitable for an introductory graduate level class or for two quarters at the senior/graduate level. Examples of optional topics are state-space methods, which may receive brief coverage in a one semester course, and nonlinear discrete-time systems Minimal Mathematics Prerequisites The mathematics background required for understanding most of the book is based on what can be reasonably expected from the average electrical, chemical or mechanical engineering senior. This background includes three semesters of calculus, differential equations and basic linear algebra. Some texts on digital control require more

Control System Design

Control System Design PDF Author: Bernard Friedland
Publisher: Courier Corporation
ISBN: 048613511X
Category : Science
Languages : en
Pages : 530

Get Book

Book Description
Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.

Introduction to the Control of Dynamic Systems

Introduction to the Control of Dynamic Systems PDF Author: Frederick O. Smetana
Publisher: AIAA
ISBN: 9781600860812
Category : Automatic control
Languages : en
Pages : 746

Get Book

Book Description


Numerical Methods for Linear Control Systems

Numerical Methods for Linear Control Systems PDF Author: Biswa Datta
Publisher: Elsevier
ISBN: 008053788X
Category : Mathematics
Languages : en
Pages : 640

Get Book

Book Description
Numerical Methods for Linear Control Systems Design and Analysis is an interdisciplinary textbook aimed at systematic descriptions and implementations of numerically-viable algorithms based on well-established, efficient and stable modern numerical linear techniques for mathematical problems arising in the design and analysis of linear control systems both for the first- and second-order models. Unique coverage of modern mathematical concepts such as parallel computations, second-order systems, and large-scale solutions Background material in linear algebra, numerical linear algebra, and control theory included in text Step-by-step explanations of the algorithms and examples

Digital Control Engineering

Digital Control Engineering PDF Author: M. Sami Fadali
Publisher: Academic Press
ISBN: 0123943914
Category : Computers
Languages : en
Pages : 602

Get Book

Book Description
Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital controls in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer. Extensive Use of computational tools: Matlab sections at end of each chapter show how to implement concepts from the chapter Frees the student from the drudgery of mundane calculations and allows him to consider more subtle aspects of control system analysis and design An engineering approach to digital controls: emphasis throughout the book is on design of control systems. Mathematics is used to help explain concepts, but throughout the text discussion is tied to design and implementation. For example coverage of analog controls in chapter 5 is not simply a review, but is used to show how analog control systems map to digital control systems Review of Background Material: contains review material to aid understanding of digital control analysis and design. Examples include discussion of discrete-time systems in time domain and frequency domain (reviewed from linear systems course) and root locus design in s-domain and z-domain (reviewed from feedback control course) Inclusion of Advanced Topics In addition to the basic topics required for a one semester senior/graduate class, the text includes some advanced material to make it suitable for an introductory graduate level class or for two quarters at the senior/graduate level. Examples of optional topics are state-space methods, which may receive brief coverage in a one semester course, and nonlinear discrete-time systems Minimal Mathematics Prerequisites The mathematics background required for understanding most of the book is based on what can be reasonably expected from the average electrical, chemical or mechanical engineering senior. This background includes three semesters of calculus, differential equations and basic linear algebra. Some texts on digital control require more

Industrial Digital Control Systems

Industrial Digital Control Systems PDF Author: K. Warwick
Publisher: IET
ISBN: 9780863411373
Category : Technology & Engineering
Languages : en
Pages : 552

Get Book

Book Description
Includes: Digital signals and systems. Digital controllers for process control applications. Design of digital controllers. Control of time delay systems. State-space concepts. System identification. Introduction to discrete optimal control. Multivariable control. Adaptive control. Computer aided design for industrial control systems. Reliability and redundancy in microprocessor controllers. Software and hardware aspects of industrial controller implementations. Application of distributed digital control algorithms to power stations. An expert system for process control.