Guidance and Control of a Spacecraft to Rendevous and Dock with a Non-cooperative Target

Guidance and Control of a Spacecraft to Rendevous and Dock with a Non-cooperative Target PDF Author: Anantha Sayanam Komanduri
Publisher: Cuvillier Verlag
ISBN: 3736939450
Category : Technology & Engineering
Languages : en
Pages : 210

Get Book

Book Description
Non-cooperative spacecrafts are those current or future assets in orbit which have lost their control authority in one or more degrees of freedom and cannot convey any information concerning their position, attitude or rates to facilitate Rendezvous and Docking/Berthing (RVD/B) process. A growing field of study in space research is to develop On-Orbit Servicing (OOS) technology capable of dealing with these space- crafts, called targets, which are designed without any intention to be serviced. To render services such as repair, refuel or removal of the target from orbit, the chaser spacecraft should exhibit sophisticated RVD/B technology for formation fly and final stage docking/berthing operations of the mission. Assuming that the terminal capture operations of the target are to be performed by a suitable manipulator system on-board chaser, this study relies upon proven technology and outlines guidance and control methodologies to achieve rendezvous during proximity phases. The entry gate of chaser after phasing can be defined at a distance of about 5 km in ± V-bar direction from the target in its orbit. To account for errors in modeling, navigation or actuation, proximity range operations from the entry gate are decomposed into three different subphases as far range, inspection or fly around and closer approach. From the entry gate and along the path of the chaser two hold points are defined: first to initiate an inspection and the second, which is close to the safe zone defined around the target, to initiate a capture. The chaser is assumed to perform a station keeping maneuver at the second hold point until initial conditions for the capture are met. Possible scenarios pertaining to the behavior of the target in a circular orbit are considered and guidance schemes for different subphases are presented using a combination of Hill-Clohessy-Willtshire (HCW) solution, elliptical fly around, glides- lope algorithm etc. Relative controllers both for position and attitude of the chaser are also presented. A Linear Quadratic (LQ) controller for relative position and a Proportional Integral Derivative (PID) controller for relative attitude with angular velocity constraints are chosen to track down the error to achieve rendezvous and attitude synchronization with the non-cooperative target. A comparative analysis between different guidance trajectories for important parameters such as time, fuel usage, minimum absolute distance and the maximum radial distance from the target is presented. Verification of the proposed guidance and control methods is done by applying them to two different case studies: the first study incorporating a stabilized target in Geostationary Earth Orbit (GEO) and the second, with a spinning target in Low Earth Orbit (LEO). The methods presented here are general and provide a simulator to the chaser to perform rendezvous analysis with non-cooperative targets. To achieve RVD/B, the study proposes a careful combination of guidance solutions for different phases of proximity operations, and for different scenario’s of the target encountered by the chaser.

Guidance and Control of a Spacecraft to Rendevous and Dock with a Non-cooperative Target

Guidance and Control of a Spacecraft to Rendevous and Dock with a Non-cooperative Target PDF Author: Anantha Sayanam Komanduri
Publisher: Cuvillier Verlag
ISBN: 3736939450
Category : Technology & Engineering
Languages : en
Pages : 210

Get Book

Book Description
Non-cooperative spacecrafts are those current or future assets in orbit which have lost their control authority in one or more degrees of freedom and cannot convey any information concerning their position, attitude or rates to facilitate Rendezvous and Docking/Berthing (RVD/B) process. A growing field of study in space research is to develop On-Orbit Servicing (OOS) technology capable of dealing with these space- crafts, called targets, which are designed without any intention to be serviced. To render services such as repair, refuel or removal of the target from orbit, the chaser spacecraft should exhibit sophisticated RVD/B technology for formation fly and final stage docking/berthing operations of the mission. Assuming that the terminal capture operations of the target are to be performed by a suitable manipulator system on-board chaser, this study relies upon proven technology and outlines guidance and control methodologies to achieve rendezvous during proximity phases. The entry gate of chaser after phasing can be defined at a distance of about 5 km in ± V-bar direction from the target in its orbit. To account for errors in modeling, navigation or actuation, proximity range operations from the entry gate are decomposed into three different subphases as far range, inspection or fly around and closer approach. From the entry gate and along the path of the chaser two hold points are defined: first to initiate an inspection and the second, which is close to the safe zone defined around the target, to initiate a capture. The chaser is assumed to perform a station keeping maneuver at the second hold point until initial conditions for the capture are met. Possible scenarios pertaining to the behavior of the target in a circular orbit are considered and guidance schemes for different subphases are presented using a combination of Hill-Clohessy-Willtshire (HCW) solution, elliptical fly around, glides- lope algorithm etc. Relative controllers both for position and attitude of the chaser are also presented. A Linear Quadratic (LQ) controller for relative position and a Proportional Integral Derivative (PID) controller for relative attitude with angular velocity constraints are chosen to track down the error to achieve rendezvous and attitude synchronization with the non-cooperative target. A comparative analysis between different guidance trajectories for important parameters such as time, fuel usage, minimum absolute distance and the maximum radial distance from the target is presented. Verification of the proposed guidance and control methods is done by applying them to two different case studies: the first study incorporating a stabilized target in Geostationary Earth Orbit (GEO) and the second, with a spinning target in Low Earth Orbit (LEO). The methods presented here are general and provide a simulator to the chaser to perform rendezvous analysis with non-cooperative targets. To achieve RVD/B, the study proposes a careful combination of guidance solutions for different phases of proximity operations, and for different scenario’s of the target encountered by the chaser.

Guidance and Control of a Spacecraft to Rendevous and Dock with a Non-cooperative Target

Guidance and Control of a Spacecraft to Rendevous and Dock with a Non-cooperative Target PDF Author: Ananth S. Komanduri
Publisher:
ISBN: 9783869559452
Category :
Languages : en
Pages : 206

Get Book

Book Description


Proceedings of the 44th Annual American Astronautical Society Guidance, Navigation, and Control Conference, 2022

Proceedings of the 44th Annual American Astronautical Society Guidance, Navigation, and Control Conference, 2022 PDF Author: Matt Sandnas
Publisher: Springer Nature
ISBN: 3031519280
Category : Flight control
Languages : en
Pages : 1809

Get Book

Book Description
Zusammenfassung: This conference attracts GN&C specialists from across the globe. The 2022 Conference was the 44th Annual GN&C conference with more than 230 attendees from six different countries with 44 companies and 28 universities represented. The conference presented more than 100 presentations and 16 posters across 18 topics. This year, the planning committee wanted to continue a focus on networking and collaboration hoping to inspire innovation through the intersection of diverse ideas. These proceedings present the relevant topics of the day while keeping our more popular and well-attended sessions as cornerstones from year to year. Several new topics including "Autonomous Control of Multiple Vehicles" and "Results and Experiences from OSIRIS-REx" were directly influenced by advancements in our industry. In the end, the 44th Annual GN&C conference became a timely reflection of the current state of the GN&C ins the space industry. The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control (GN&C) Conference began 1977 as an informal exchange of ideas and reports of achievements among guidance and control specialists local to the Colorado area. Bud Gates, Don Parsons, and Bob Culp organized the first conference, and began the annual series of meetings the following winter. In March 1978, the First Annual Rocky Mountain Guidance and Control Conference met at Keystone, Colorado. It met there for eighteen years, moving to Breckenridge in 1996 where it has been for over 25 years

Automated Rendezvous and Docking of Spacecraft

Automated Rendezvous and Docking of Spacecraft PDF Author: Wigbert Fehse
Publisher: Cambridge University Press
ISBN: 1139440683
Category : Technology & Engineering
Languages : en
Pages : 517

Get Book

Book Description
The definitive reference for space engineers on rendezvous and docking/berthing (RVD/B) related issues, this book answers key questions such as: How does the docking vehicle accurately approach the target spacecraft? What technology is needed aboard the spacecraft to perform automatic rendezvous and docking, and what systems are required by ground control to supervise this process? How can the proper functioning of all rendezvous-related equipment, systems and operations be verified before launch? The book provides an overview of the major issues governing approach and mating strategies, and system concepts for rendezvous and docking/berthing. These issues are described and explained such that aerospace engineers, students and even newcomers to the field can acquire a basic understanding of RVD/B. The author would like to extend his thanks to Dr Shufan Wu, GNC specialist and translator of the book's Chinese edition, for his help in the compilation of these important errata.

Guidance and Control

Guidance and Control PDF Author:
Publisher:
ISBN:
Category : Space vehicles
Languages : en
Pages : 672

Get Book

Book Description


Guidance, Control and Docking for CubeSat-based Active Debris Removal

Guidance, Control and Docking for CubeSat-based Active Debris Removal PDF Author: Mohamed Khalil Ben-Larbi
Publisher: Cuvillier Verlag
ISBN: 3736968485
Category : Science
Languages : en
Pages : 223

Get Book

Book Description
While a paradigm shift in space industry has already started involving “mass production” of higher standardized, large distributed systems such as constellations, there are no effective solutions existing for the “mass removal” of satellites. Many indicators point to a further increase in the space traffic in Earth orbit in the near future, which could imply new dynamics in the evolution of the space debris environment. Even in case of diligent compliance with the Inter-Agency Space Debris Coordination Committee (IADC) mitigation guidelines, the growth in space traffic complicates its management and drastically increases the probability of accidents and system failures. NASA scientist Donald J. Kessler proposed a scenario in which the density of objects in low Earth orbit is high enough that collisions between objects could cause a cascade that renders space unusable for many generations. Therefore, a reliable and affordable capability of removing or servicing non-functional objects is essential to guarantee sustainable access to Earth orbit. Recently, the CubeSat design standard introduced a new class of cost-efficient small spacecraft and thereby offers a potential solution to the active debris removal (ADR) problem. The development of a novel “CubeSat-compatible” ADR technology has significant advantages such as the use of commercial off-the-shelf parts, reduced launch cost, and reduced design efforts. This thesis presents –in the frame of an ADR mission– an approach to advanced rendezvous and docking with non-cooperative targets via CubeSat. It covers the design process of simulation systems used for verification purposes, the ideation and implementation of novel guidance, control, and docking techniques, as well as their verification and evaluation. The outcome of this research is a series of validated software tools, processes, technical devices, and algorithms for automated approach and docking, that have been tested in simulation and with prototype hardware.

Guidance and Control 2003

Guidance and Control 2003 PDF Author: Ian J. Gravseth
Publisher:
ISBN:
Category : Flight control
Languages : en
Pages : 674

Get Book

Book Description


Journal of Guidance, Control, and Dynamics

Journal of Guidance, Control, and Dynamics PDF Author:
Publisher:
ISBN:
Category : Airplanes
Languages : en
Pages : 666

Get Book

Book Description


Control, Guidance and Navigation of Spacecraft

Control, Guidance and Navigation of Spacecraft PDF Author: NASA-University Conference on the Science and Technology of Space Exploration, Chicago, 1962
Publisher:
ISBN:
Category : Navigation (Astronautics)
Languages : en
Pages : 64

Get Book

Book Description


Handbook of Space Technology

Handbook of Space Technology PDF Author: Wilfried Ley
Publisher: John Wiley & Sons
ISBN: 0470742410
Category : Technology & Engineering
Languages : en
Pages : 908

Get Book

Book Description
Twenty years since the first edition was published in the German language, and just over fifty years since the launch of the Earth’s first ever artificial satellite Sputnik 1, this third edition of the Handbook of Space Technology presents in fully integrated colour a detailed insight into the fascinating world of space for the first time in the English language. Authored by over 70 leading experts from universities, research institutions and the space industry, this comprehensive handbook describes the processes and methodologies behind the development, construction, operation and utilization of space systems, presenting the profound changes that have occurred in recent years in the engineering, materials, processes and even politics associated with space technologies and utilization. The individual chapters are self-contained, enabling the reader to gain a quick and reliable overview of a selected field; an extensive reference and keyword list helps those who wish to deepen their understanding of individual topics. Featuring superb, full colour illustrations and photography throughout, this interdisciplinary reference contains practical, hands-on engineering and planning information that will be invaluable to those on a career path within space technology, or simply for those of us who’d like to know more about this fascinating industry. Main section headings include: Introduction (historical overview, space missions) Fundamentals (orbital mechanics, aerothermodynamics/ reentry, space debris) Launch Vehicles (staged technologies, propulsion systems, launch infrastructure) Space Vehicle Subsystems (structure, energy supply, thermal controls, attitude control, communication) Aspects of Human Flight (man in space, life support systems, rendezvous and docking) Mission Operations (satellite operation, control center, ground station network) Utilization of Space (Earth observation, communication navigation, space astronomy, material sciences, space medicine, robotics) Configuration and Design of a Space Vehicle (mission concept, system concept, environmental simulation, system design, Galileo satellites) Management of Space Missions (project management, quality management, cost management, space law)