Computational Methods for Approximation of Large-Scale Dynamical Systems

Computational Methods for Approximation of Large-Scale Dynamical Systems PDF Author: Mohammad Monir Uddin
Publisher: CRC Press
ISBN: 1351028618
Category : Mathematics
Languages : en
Pages : 312

Get Book

Book Description
These days, computer-based simulation is considered the quintessential approach to exploring new ideas in the different disciplines of science, engineering and technology (SET). To perform simulations, a physical system needs to be modeled using mathematics; these models are often represented by linear time-invariant (LTI) continuous-time (CT) systems. Oftentimes these systems are subject to additional algebraic constraints, leading to first- or second-order differential-algebraic equations (DAEs), otherwise known as descriptor systems. Such large-scale systems generally lead to massive memory requirements and enormous computational complexity, thus restricting frequent simulations, which are required by many applications. To resolve these complexities, the higher-dimensional system may be approximated by a substantially lower-dimensional one through model order reduction (MOR) techniques. Computational Methods for Approximation of Large-Scale Dynamical Systems discusses computational techniques for the MOR of large-scale sparse LTI CT systems. Although the book puts emphasis on the MOR of descriptor systems, it begins by showing and comparing the various MOR techniques for standard systems. The book also discusses the low-rank alternating direction implicit (LR-ADI) iteration and the issues related to solving the Lyapunov equation of large-scale sparse LTI systems to compute the low-rank Gramian factors, which are important components for implementing the Gramian-based MOR. Although this book is primarly aimed at post-graduate students and researchers of the various SET disciplines, the basic contents of this book can be supplemental to the advanced bachelor's-level students as well. It can also serve as an invaluable reference to researchers working in academics and industries alike. Features: Provides an up-to-date, step-by-step guide for its readers. Each chapter develops theories and provides necessary algorithms, worked examples, numerical experiments and related exercises. With the combination of this book and its supplementary materials, the reader gains a sound understanding of the topic. The MATLAB® codes for some selected algorithms are provided in the book. The solutions to the exercise problems, experiment data sets and a digital copy of the software are provided on the book's website; The numerical experiments use real-world data sets obtained from industries and research institutes.

Approximation of Large-scale Dynamical Systems

Approximation of Large-scale Dynamical Systems PDF Author: Athanasios C. Antoulas
Publisher: SIAM
ISBN: 9780898715293
Category : Mathematics
Languages : en
Pages : 520

Get Book

Book Description
Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction.

Computational Methods for Approximation of Large-Scale Dynamical Systems

Computational Methods for Approximation of Large-Scale Dynamical Systems PDF Author: Mohammad Monir Uddin
Publisher: CRC Press
ISBN: 1351028618
Category : Mathematics
Languages : en
Pages : 312

Get Book

Book Description
These days, computer-based simulation is considered the quintessential approach to exploring new ideas in the different disciplines of science, engineering and technology (SET). To perform simulations, a physical system needs to be modeled using mathematics; these models are often represented by linear time-invariant (LTI) continuous-time (CT) systems. Oftentimes these systems are subject to additional algebraic constraints, leading to first- or second-order differential-algebraic equations (DAEs), otherwise known as descriptor systems. Such large-scale systems generally lead to massive memory requirements and enormous computational complexity, thus restricting frequent simulations, which are required by many applications. To resolve these complexities, the higher-dimensional system may be approximated by a substantially lower-dimensional one through model order reduction (MOR) techniques. Computational Methods for Approximation of Large-Scale Dynamical Systems discusses computational techniques for the MOR of large-scale sparse LTI CT systems. Although the book puts emphasis on the MOR of descriptor systems, it begins by showing and comparing the various MOR techniques for standard systems. The book also discusses the low-rank alternating direction implicit (LR-ADI) iteration and the issues related to solving the Lyapunov equation of large-scale sparse LTI systems to compute the low-rank Gramian factors, which are important components for implementing the Gramian-based MOR. Although this book is primarly aimed at post-graduate students and researchers of the various SET disciplines, the basic contents of this book can be supplemental to the advanced bachelor's-level students as well. It can also serve as an invaluable reference to researchers working in academics and industries alike. Features: Provides an up-to-date, step-by-step guide for its readers. Each chapter develops theories and provides necessary algorithms, worked examples, numerical experiments and related exercises. With the combination of this book and its supplementary materials, the reader gains a sound understanding of the topic. The MATLAB® codes for some selected algorithms are provided in the book. The solutions to the exercise problems, experiment data sets and a digital copy of the software are provided on the book's website; The numerical experiments use real-world data sets obtained from industries and research institutes.

Approximation of Large-Scale Dynamical Systems

Approximation of Large-Scale Dynamical Systems PDF Author: Athanasios C. Antoulas
Publisher: SIAM
ISBN: 0898716586
Category : Mathematics
Languages : en
Pages : 489

Get Book

Book Description
Mathematical models are used to simulate, and sometimes control, the behavior of physical and artificial processes such as the weather and very large-scale integration (VLSI) circuits. The increasing need for accuracy has led to the development of highly complex models. However, in the presence of limited computational accuracy and storage capabilities model reduction (system approximation) is often necessary. Approximation of Large-Scale Dynamical Systems provides a comprehensive picture of model reduction, combining system theory with numerical linear algebra and computational considerations. It addresses the issue of model reduction and the resulting trade-offs between accuracy and complexity. Special attention is given to numerical aspects, simulation questions, and practical applications.

Efficient Modeling and Control of Large-Scale Systems

Efficient Modeling and Control of Large-Scale Systems PDF Author: Javad Mohammadpour
Publisher: Springer Science & Business Media
ISBN: 144195757X
Category : Technology & Engineering
Languages : en
Pages : 335

Get Book

Book Description
Complexity and dynamic order of controlled engineering systems is constantly increasing. Complex large scale systems (where "large" reflects the system’s order and not necessarily its physical size) appear in many engineering fields, such as micro-electromechanics, manufacturing, aerospace, civil engineering and power engineering. Modeling of these systems often result in very high-order models imposing great challenges to the analysis, design and control problems. "Efficient Modeling and Control of Large-Scale Systems" compiles state-of-the-art contributions on recent analytical and computational methods for addressing model reduction, performance analysis and feedback control design for such systems. Also addressed at length are new theoretical developments, novel computational approaches and illustrative applications to various fields, along with: - An interdisciplinary focus emphasizing methods and approaches that can be commonly applied in various engineering fields -Examinations of applications in various fields including micro-electromechanical systems (MEMS), manufacturing processes, power networks, traffic control "Efficient Modeling and Control of Large-Scale Systems" is an ideal volume for engineers and researchers working in the fields of control and dynamic systems.

Interpolatory Methods for Model Reduction

Interpolatory Methods for Model Reduction PDF Author: A. C. Antoulas
Publisher: SIAM
ISBN: 1611976081
Category : Mathematics
Languages : en
Pages : 244

Get Book

Book Description
Dynamical systems are a principal tool in the modeling, prediction, and control of a wide range of complex phenomena. As the need for improved accuracy leads to larger and more complex dynamical systems, direct simulation often becomes the only available strategy for accurate prediction or control, inevitably creating a considerable burden on computational resources. This is the main context where one considers model reduction, seeking to replace large systems of coupled differential and algebraic equations that constitute high fidelity system models with substantially fewer equations that are crafted to control the loss of fidelity that order reduction may induce in the system response. Interpolatory methods are among the most widely used model reduction techniques, and Interpolatory Methods for Model Reduction is the first comprehensive analysis of this approach available in a single, extensive resource. It introduces state-of-the-art methods reflecting significant developments over the past two decades, covering both classical projection frameworks for model reduction and data-driven, nonintrusive frameworks. This textbook is appropriate for a wide audience of engineers and other scientists working in the general areas of large-scale dynamical systems and data-driven modeling of dynamics.

Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems

Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems PDF Author: Eusebius Doedel
Publisher: Springer Science & Business Media
ISBN: 1461212081
Category : Mathematics
Languages : en
Pages : 482

Get Book

Book Description
The Institute for Mathematics and its Applications (IMA) devoted its 1997-1998 program to Emerging Applications of Dynamical Systems. Dynamical systems theory and related numerical algorithms provide powerful tools for studying the solution behavior of differential equations and mappings. In the past 25 years computational methods have been developed for calculating fixed points, limit cycles, and bifurcation points. A remaining challenge is to develop robust methods for calculating more complicated objects, such as higher- codimension bifurcations of fixed points, periodic orbits, and connecting orbits, as well as the calcuation of invariant manifolds. Another challenge is to extend the applicability of algorithms to the very large systems that result from discretizing partial differential equations. Even the calculation of steady states and their linear stability can be prohibitively expensive for large systems (e.g. 10_3- -10_6 equations) if attempted by simple direct methods. Several of the papers in this volume treat computational methods for low and high dimensional systems and, in some cases, their incorporation into software packages. A few papers treat fundamental theoretical problems, including smooth factorization of matrices, self -organized criticality, and unfolding of singular heteroclinic cycles. Other papers treat applications of dynamical systems computations in various scientific fields, such as biology, chemical engineering, fluid mechanics, and mechanical engineering.

Computational Methods in Systems Biology

Computational Methods in Systems Biology PDF Author: Jun Pang
Publisher: Springer Nature
ISBN: 3031426975
Category :
Languages : en
Pages : 287

Get Book

Book Description


Computational Methods in Systems Biology

Computational Methods in Systems Biology PDF Author: Eugenio Cinquemani
Publisher: Springer Nature
ISBN: 303085633X
Category : Science
Languages : en
Pages : 292

Get Book

Book Description
This book constitutes the refereed proceedings of the 19th International Conference on Computational Methods in Systems Biology, CMSB 2021, held in Bordeaux, France, September 22–24, 2021.*The 13 full papers and 5 tool papers were carefully reviewed and selected from 32 submissions. The topics of interest include biological process modelling; biological system model verification, validation, analysis, and simulation; high-performance computational systems biology; model inference from experimental data; multi-scale modeling and analysis methods; computational approaches for synthetic biology; machine learning and data-driven approaches; microbial ecology modelling and analysis; methods and protocols for populations and their variability; models, applications, and case studies in systems and synthetic biology. The chapters "Microbial Community Decision Making Models in Batch", "Population design for synthetic gene circuits", "BioFVM-X: An MPI+OpenMP 3-D Simulator for Biological Systems" are published open access under a CC BY license (Creative Commons Attribution 4.0 International License). * The conference was held in a hybrid mode due to the COVID-19 pandemic.

Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems PDF Author: Frederica Darema
Publisher: Springer Nature
ISBN: 3031279867
Category : Computers
Languages : en
Pages : 937

Get Book

Book Description
This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).

Computational Methods in Systems Biology

Computational Methods in Systems Biology PDF Author: Ion Petre
Publisher: Springer Nature
ISBN: 3031150341
Category : Science
Languages : en
Pages : 324

Get Book

Book Description
This book constitutes the refereed proceedings of the 20th International Conference on Computational Methods in Systems Biology, CMSB 2022, held in Bucharest, Romania, in September 2022. The 13 full papers and 4 tool papers were carefully reviewed and selected from 43 submissions. CMSB focuses on modeling, simulation, analysis, design and control of biological systems. The papers are arranged thematically as follows: Chemical reaction networks; Boolean networks; continuous and hybrid models; machine learning; software.