Cellular Automata Representation of Submicroscopic Physics

Cellular Automata Representation of Submicroscopic Physics PDF Author: Victor Christianto
Publisher: Infinite Study
ISBN:
Category : Science
Languages : en
Pages : 13

Get Book

Book Description
Krasnoholovets theorized that the microworld is constituted as a tessellation of primary topological balls. The tessellattice becomes the origin of a submicrospic mechanics in which a quantum system is subdivided to two subsystems: the particle and its inerton cloud, which appears due to the interaction of the moving particle with oncoming cells of the tessellattice. The particle and its inerton cloud periodically change the momentum and hence move like a wave. The new approach allows us to correlate the Klein-Gordon equation with the deformation coat that is formed in the tessellatice around the particle. The submicroscopic approach shows that the source of any type of wave movements including the Klein-Gordon, Schrödinger, and classical wave equations is hidden in the tessellattice and its basic exciations – inertons, carriers of mass and inert properties of matter.

Cellular Automata Representation of Submicroscopic Physics

Cellular Automata Representation of Submicroscopic Physics PDF Author: Victor Christianto
Publisher: Infinite Study
ISBN:
Category : Science
Languages : en
Pages : 13

Get Book

Book Description
Krasnoholovets theorized that the microworld is constituted as a tessellation of primary topological balls. The tessellattice becomes the origin of a submicrospic mechanics in which a quantum system is subdivided to two subsystems: the particle and its inerton cloud, which appears due to the interaction of the moving particle with oncoming cells of the tessellattice. The particle and its inerton cloud periodically change the momentum and hence move like a wave. The new approach allows us to correlate the Klein-Gordon equation with the deformation coat that is formed in the tessellatice around the particle. The submicroscopic approach shows that the source of any type of wave movements including the Klein-Gordon, Schrödinger, and classical wave equations is hidden in the tessellattice and its basic exciations – inertons, carriers of mass and inert properties of matter.

On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis

On Cellular Automata Representation of Submicroscopic Physics: From Static Space to Zuse’s Calculating Space Hypothesis PDF Author: Victor Christianto
Publisher: Infinite Study
ISBN:
Category : Science
Languages : en
Pages : 11

Get Book

Book Description
In some recent papers (G. ‘t Hooft and others), it has been argued that quantum mechanics can arise from classical cellular automata. Nonetheless, G. Shpenkov has proved that the classical wave equation makes it possible to derive a periodic table of elements, which is very close to Mendeleyev’s one, and describe also other phenomena related to the structure of molecules. Hence the classical wave equation complements Schrödinger’s equation, which implies the appearance of a cellular automaton molecular model starting from classical wave equation. The other studies show that the microworld is constituted as a tessellation of primary topological balls. The tessellattice becomes the origin of a submicrospic mechanics in which a quantum system is subdivided to two subsystems: the particle and its inerton cloud, which appears due to the interaction of the moving particle with oncoming cells of the tessellattice. The particle and its inerton cloud periodically change the momentum and hence move like a wave. The new approach allows us to correlate the Klein-Gordon equation with the deformation coat that is formed in the tessellatice around the particle. The submicroscopic approach shows that the source of any type of wave movements including the Klein-Gordon, Schrödinger, and classical wave equations is hidden in the tessellattice and its basic exciations – inertons, carriers of mass and inert properies of matter. We also discuss possible correspondence with Konrad Zuse’s calculating space.

Collected Papers. Volume XI

Collected Papers. Volume XI PDF Author: Florentin Smarandache
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 1018

Get Book

Book Description
This eleventh volume of Collected Papers includes 90 papers comprising 988 pages on Physics, Artificial Intelligence, Health Issues, Decision Making, Economics, Statistics, written between 2001-2022 by the author alone or in collaboration with the following 84 co-authors (alphabetically ordered) from 19 countries: Abhijit Saha, Abu Sufian, Jack Allen, Shahbaz Ali, Ali Safaa Sadiq, Aliya Fahmi, Atiqa Fakhar, Atiqa Firdous, Sukanto Bhattacharya, Robert N. Boyd, Victor Chang, Victor Christianto, V. Christy, Dao The Son, Debjit Dutta, Azeddine Elhassouny, Fazal Ghani, Fazli Amin, Anirudha Ghosha, Nasruddin Hassan, Hoang Viet Long, Jhulaneswar Baidya, Jin Kim, Jun Ye, Darjan Karabašević, Vasilios N. Katsikis, Ieva Meidutė-Kavaliauskienė, F. Kaymarm, Nour Eldeen M. Khalifa, Madad Khan, Qaisar Khan, M. Khoshnevisan, Kifayat Ullah,, Volodymyr Krasnoholovets, Mukesh Kumar, Le Hoang Son, Luong Thi Hong Lan, Tahir Mahmood, Mahmoud Ismail, Mohamed Abdel-Basset, Siti Nurul Fitriah Mohamad, Mohamed Loey, Mai Mohamed, K. Mohana, Kalyan Mondal, Muhammad Gulfam, Muhammad Khalid Mahmood, Muhammad Jamil, Muhammad Yaqub Khan, Muhammad Riaz, Nguyen Dinh Hoa, Cu Nguyen Giap, Nguyen Tho Thong, Peide Liu, Pham Huy Thong, Gabrijela Popović, Surapati Pramanik, Dmitri Rabounski, Roslan Hasni, Rumi Roy, Tapan Kumar Roy, Said Broumi, Saleem Abdullah, Muzafer Saračević, Ganeshsree Selvachandran, Shariful Alam, Shyamal Dalapati, Housila P. Singh, R. Singh, Rajesh Singh, Predrag S. Stanimirović, Kasan Susilo, Dragiša Stanujkić, Alexandra Şandru, Ovidiu Ilie Şandru, Zenonas Turskis, Yunita Umniyati, Alptekin Ulutaș, Maikel Yelandi Leyva Vázquez, Binyamin Yusoff, Edmundas Kazimieras Zavadskas, Zhao Loon Wang.

Lost and Found in Mathematics. Dissident cosmologists’s guide to the Universe

Lost and Found in Mathematics. Dissident cosmologists’s guide to the Universe PDF Author: Victor Christianto
Publisher: Infinite Study
ISBN:
Category : Mathematics
Languages : en
Pages : 191

Get Book

Book Description
This book is inspired by a German theoretical physicist, Sabine Hossenfelder’s publication: “Lost in Mathematics”. Her book seems to question highly mathematical and a lot of abstraction in the development of physics and cosmology studies nowadays. There is clear tendency that in recent decades, the physics science has been predominated by such an advanced mathematics, which at times sounding more like acrobatics approach to a reality. Through books by senior mathematical-physicists like Unzicker and Peter Woit, we know that the answer of TOE is not in superstring theories or other variations of such 26 dimensional bosonic string theory, of which none of those theories survived experimental test, but perhaps in low dimensional physics. As Alexander Unzicker suggests, perhaps it is more advisable to consider rotation in 3D space (known as SO3), or a kind of superfluid vortices version of gravitation theory. We can also reconsider proposition by the late Prof F. Winterberg (formerly professor at Univ. Nevada, Reno), that it is most likely that superfluid phonon roton theory in 3D can replace the entire superstring theories. While we don’t explore yet implications of his model to particle physics, we discuss here some published papers at several journals in the past few years.

Quantum Cellular Automata

Quantum Cellular Automata PDF Author: Massimo Macucci
Publisher: Imperial College Press
ISBN: 1860949061
Category : Computers
Languages : en
Pages : 299

Get Book

Book Description
The Quantum Cellular Automaton (QCA) concept represents an attempt to break away from the traditional three-terminal device paradigm that has dominated digital computation. Since its early formulation in 1993 at Notre Dame University, the QCA idea has received significant attention and several physical implementations have been proposed. This book provides a comprehensive discussion of the simulation approaches and the experimental work that have been undertaken on the fabrication of devices capable of demonstrating the fundamentals of QCA action. Complementary views of future perspectives for QCA technology are presented, highlighting a process of realistic simulation and of targeted experiments that can be assumed as a model for the evaluation of future device proposals. Contents: The Concept of Quantum-Dot Cellular Automata (C S Lent); QCA Simulation with the Occupation-Number Hamiltonian (M Macucci & M Governale); Realistic Time-Independent Models of a QCA Cell (J Martorell et al.); Time-Independent Simulation of QCA Circuits (L Bonci et al.); Simulation of the Time-Dependent Behavior of QCA Circuits with the Occupation-Number Hamiltonian (I Yakimenko & K-F Berggren); Time-Dependent Analysis of QCA Circuits with the Monte Carlo Method (L Bonci et al.); Implementation of QCA Cells with SOI Technology (F E Prins et al.); Implementation of QCA Cells in GaAs Technology (Y Jin et al.); Non-Invasive Charge Detectors (G Iannaccone et al.); Metal Dot QCA (G L Snider et al.); Molecular QCA (C S Lent); Magnetic Quantum-Dot Cellular Automata (MQCA) (A Imre et al.). Readership: Physicists, electronic engineers and academics.

Cellular Automaton Modeling of Biological Pattern Formation

Cellular Automaton Modeling of Biological Pattern Formation PDF Author: Andreas Deutsch
Publisher: Springer Science & Business Media
ISBN: 0817644156
Category : Science
Languages : en
Pages : 331

Get Book

Book Description
This book focuses on a challenging application field of cellular automata: pattern formation in biological systems, such as the growth of microorganisms, dynamics of cellular tissue and tumors, and formation of pigment cell patterns. These phenomena, resulting from complex cellular interactions, cannot be deduced solely from experimental analysis, but can be more easily examined using mathematical models, in particular, cellular automaton models. While there are various books treating cellular automaton modeling, this interdisciplinary work is the first one covering biological applications. The book is aimed at researchers, practitioners, and students in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science interested in a cellular automaton approach to biological modeling.

Let the Wind blow: Physics of Wave and Only Wave

Let the Wind blow: Physics of Wave and Only Wave PDF Author: Victor Christianto
Publisher: Infinite Study
ISBN: 1599735504
Category : Science
Languages : en
Pages : 298

Get Book

Book Description
In this book, we try to make our case through examples in different fields of science, including missiology, ecclesiology,10 and also medicine and economics theorizing. We try to be (almost) everything for everyone, while keep being humble as two unprofitable servants. That way we would quote the title of Borges’ short story: Everything and nothing.

Cellular Automaton Modeling of Biological Pattern Formation

Cellular Automaton Modeling of Biological Pattern Formation PDF Author: Andreas Deutsch
Publisher: Birkhäuser
ISBN: 1489979808
Category : Mathematics
Languages : en
Pages : 464

Get Book

Book Description
This text explores the use of cellular automata in modeling pattern formation in biological systems. It describes several mathematical modeling approaches utilizing cellular automata that can be used to study the dynamics of interacting cell systems both in simulation and in practice. New in this edition are chapters covering cell migration, tissue development, and cancer dynamics, as well as updated references and new research topic suggestions that reflect the rapid development of the field. The book begins with an introduction to pattern-forming principles in biology and the various mathematical modeling techniques that can be used to analyze them. Cellular automaton models are then discussed in detail for different types of cellular processes and interactions, including random movement, cell migration, adhesive cell interaction, alignment and cellular swarming, growth processes, pigment cell pattern formation, tissue development, tumor growth and invasion, and Turing-type patterns and excitable media. In the final chapter, the authors critically discuss possibilities and limitations of the cellular automaton approach in modeling various biological applications, along with future research directions. Suggestions for research projects are provided throughout the book to encourage additional engagement with the material, and an accompanying simulator is available for readers to perform their own simulations on several of the models covered in the text. QR codes are included within the text for easy access to the simulator. With its accessible presentation and interdisciplinary approach, Cellular Automaton Modeling of Biological Pattern Formation is suitable for graduate and advanced undergraduate students in mathematical biology, biological modeling, and biological computing. It will also be a valuable resource for researchers and practitioners in applied mathematics, mathematical biology, computational physics, bioengineering, and computer science. PRAISE FOR THE FIRST EDITION “An ideal guide for someone with a mathematical or physical background to start exploring biological modelling. Importantly, it will also serve as an excellent guide for experienced modellers to innovate and improve their methodologies for analysing simulation results.” —Mathematical Reviews

Cellular Automata

Cellular Automata PDF Author: Joel L. Schiff
Publisher: Wiley-Interscience
ISBN: 9780470168790
Category : Mathematics
Languages : en
Pages : 0

Get Book

Book Description
An accessible and multidisciplinaryintroduction to cellular automata As the applicability of cellular automata broadens and technology advances, there is a need for a concise, yet thorough, resource that lays the foundation of key cellularautomata rules and applications. In recent years, Stephen Wolfram's A New Kind of Science has brought the modeling power that lies in cellular automata to the attentionof the scientific world, and now, Cellular Automata: A Discrete View of the World presents all the depth, analysis, and applicability of the classic Wolfram text in a straightforward, introductory manner. This book offers an introduction to cellular automata as a constructive method for modeling complex systems where patterns of self-organization arising from simple rules are revealed in phenomena that exist across a wide array of subject areas, including mathematics, physics, economics, and the social sciences. The book begins with a preliminary introduction to cellular automata, including a brief history of the topic along with coverage of sub-topics such as randomness, dimension, information, entropy, and fractals. The author then provides a complete discussion of dynamical systems and chaos due to their close connection with cellular automata and includes chapters that focus exclusively on one- and two-dimensional cellular automata. The next and most fascinating area of discussion is the application of these types of cellular automata in order to understand the complex behavior that occurs in natural phenomena. Finally, the continually evolving topic of complexity is discussed with a focus on how to properly define, identify, and marvel at its manifestations in various environments. The author's focus on the most important principles of cellular automata, combined with his ability to present complex material in an easy-to-follow style, makes this book a very approachable and inclusive source for understanding the concepts and applications of cellular automata. The highly visual nature of the subject is accented with over 200 illustrations, including an eight-page color insert, which provide vivid representations of the cellular automata under discussion. Readers also have the opportunity to follow and understand the models depicted throughout the text and create their own cellular automata using Java applets and simple computer code, which are available via the book's FTP site. This book serves as a valuable resource for undergraduate and graduate students in the physical, biological, and social sciences and may also be of interest to any reader with a scientific or basic mathematical background.

Understanding Information and Computation

Understanding Information and Computation PDF Author: Dr Philip Tetlow
Publisher: Gower Publishing, Ltd.
ISBN: 1409461564
Category : Business & Economics
Languages : en
Pages : 399

Get Book

Book Description
The World Wide Web is truly astounding. It has changed the way we interact, learn and innovate. It is the largest sociotechnical system humankind has created and is advancing at a pace that leaves most in awe. It is an unavoidable fact that the future of the world is now inextricably linked to the future of the Web. Almost every day it appears to change, to get better and increase its hold on us. For all this we are starting to see underlying stability emerge. The way that Web sites rank in terms of popularity, for example, appears to follow laws with which we are familiar. What is fascinating is that these laws were first discovered, not in fields like computer science or information technology, but in what we regard as more fundamental disciplines like biology, physics and mathematics. Consequently the Web, although synthetic at its surface, seems to be quite 'natural' deeper down, and one of the driving aims of the new field of Web Science is to discover how far down such ‘naturalness’ goes. If the Web is natural to its core, that raises some fundamental questions. It forces us, for example, to ask if the central properties of the Web might be more elemental than the truths we cling to from our understandings of the physical world. In essence, it demands that we question the very nature of information. Understanding Information and Computation is about such questions and one possible route to potentially mind-blowing answers.