Vibration Control Methods of Mechanical Distributed Parameter Systems

Vibration Control Methods of Mechanical Distributed Parameter Systems PDF Author: Xueyan Xing
Publisher: Springer Nature
ISBN: 9811615322
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book

Book Description
This book aims at investigating PDE modeling and vibration control of some typical mechanical distributed parameter systems. Several control methods are proposed to realize stabilization of the closed-loop system with the help of mathematical tools and stability analysis methods. Besides, some common engineering problems, such as input and output constraints, are also involved in the control design. This book offers a comprehensive introduction of mechanical distributed parameter systems, including PDE modeling, controller design and stability analysis. The related fundamental mathematical tools and analytical approaches involving in the PDE modeling and controller are also provided, which broadens its reach to readers.

Vibration Control Methods of Mechanical Distributed Parameter Systems

Vibration Control Methods of Mechanical Distributed Parameter Systems PDF Author: Xueyan Xing
Publisher: Springer Nature
ISBN: 9811615322
Category : Technology & Engineering
Languages : en
Pages : 264

Get Book

Book Description
This book aims at investigating PDE modeling and vibration control of some typical mechanical distributed parameter systems. Several control methods are proposed to realize stabilization of the closed-loop system with the help of mathematical tools and stability analysis methods. Besides, some common engineering problems, such as input and output constraints, are also involved in the control design. This book offers a comprehensive introduction of mechanical distributed parameter systems, including PDE modeling, controller design and stability analysis. The related fundamental mathematical tools and analytical approaches involving in the PDE modeling and controller are also provided, which broadens its reach to readers.

Mechatronic Control of Distributed Noise and Vibration

Mechatronic Control of Distributed Noise and Vibration PDF Author: Christopher D. Rahn
Publisher: Springer Science & Business Media
ISBN: 3662046415
Category : Technology & Engineering
Languages : en
Pages : 220

Get Book

Book Description
Vibration and noise reduce the perceived quality, productivity, and efficiency of many and limit production speeds electromechanical systems. Vibration can cause defects during manufacturing and produce premature failure of finished products due to fa tigue. Potential contact with a vibrating system or hearing darnage from a noisy machine can produce a dangerous, unhealthy, and uncomfortable operating environ ment. Recent advances in computer technology have allowed the development of so phisticated electromechanical systems for the control of vibration and noise. The demanding specifications of many modern systems require higher performance than possible with the traditional, purely mechanical approaches of increasing system stiff ness or damping. Mechatronic systems that integrate computer software and hard ware with electromechanical sensors and actuators to control complex mechanical systems have been demonstrated to provide outstanding vibration and noise reduc tion. The current trends toward higher speed computation and lower cost, higher performance sensors and actuators indicate the continuing possibilities for this con trol approach in future applications.

Vibration Control Systems Utilizing Smart Materials Actuators

Vibration Control Systems Utilizing Smart Materials Actuators PDF Author: Seung-Bok Choi
Publisher:
ISBN: 9781634852081
Category : Technology & Engineering
Languages : en
Pages : 235

Get Book

Book Description
Recently, considerable attention has been focused on vibration control technology using "smart" or "intelligent" materials, which have inherently actuating and sensing capabilities. Typically these materials are employed to the vibration control of lumped parameter systems or distributed parameter structures by controlling the mass-distribution, stiffness change and the dissipation change. This may be accomplished by semi-active control or active control methods associated with the smart material actuators. Among many candidates of smart materials, magneto-rheological materials and piezoelectric materials are frequently adopted for vibration control. Magneto-rheological fluid and elastomer are especially utilized for vibration control of lumped parameter systems such as automotive damper, while the piezoelectric materials are used for vibration control of flexible distributed parameter structures with salient characteristics, such as fast response time. This book can be used as a textbook for graduate students or as a reference book for potential researchers who are interested in vibration control utilizing new methods associated with smart materials actuators. This book will provide some novel insights for advanced vibration control technology to many readers.

PDE Modeling and Boundary Control for Flexible Mechanical System

PDE Modeling and Boundary Control for Flexible Mechanical System PDF Author: Zhijie Liu
Publisher: Springer Nature
ISBN: 981152596X
Category : Technology & Engineering
Languages : en
Pages : 184

Get Book

Book Description
This book provides a comprehensive review of fundamental issues in the dynamical modeling and vibration control design for several flexible mechanical systems, such as flexible satellites, flexible aerial refueling hoses, and flexible three-dimensional manipulators. Offering an authoritative reference guide to the dynamics and control of flexible mechanical systems, it equips readers to solve a host of problems concerning these systems. It provides not only a complete overview of flexible systems, but also a better understanding of the technical levels involved. The book is divided into ten chapters: Chapters 1 and 2 lay the foundations, while the remaining chapters explore several independent yet related topics in detail. The book’s final chapter presents conclusions and recommendations for future research. Given its scope, the book is intended for researchers, graduate students, and engineers whose work involves control systems, flexible mechanical systems, and related areas.

Vibration and Control of Mechanical Systems--2001

Vibration and Control of Mechanical Systems--2001 PDF Author: H. R. Hamidzadeh
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 412

Get Book

Book Description


Active Vibration Control and Stability Analysis of Flexible Beam Systems

Active Vibration Control and Stability Analysis of Flexible Beam Systems PDF Author: Wei He
Publisher: Springer
ISBN: 9811075395
Category : Technology & Engineering
Languages : en
Pages : 199

Get Book

Book Description
This book presents theoretical explorations of several fundamental problems in the dynamics and control of flexible beam systems. By integrating fresh concepts and results to form a systematic approach to control, it establishes a basic theoretical framework. It includes typical control design examples verified using MATLAB simulation, which in turn illustrate the successful practical applications of active vibration control theory for flexible beam systems. The book is primarily intended for researchers and engineers in the control system and mechanical engineering community, offering them a unique resource.

Modeling and Control of Vibration in Mechanical Systems

Modeling and Control of Vibration in Mechanical Systems PDF Author: Chunling Du
Publisher: CRC Press
ISBN: 1439817995
Category : Technology & Engineering
Languages : en
Pages : 336

Get Book

Book Description
From the ox carts and pottery wheels the spacecrafts and disk drives, efficiency and quality has always been dependent on the engineer’s ability to anticipate and control the effects of vibration. And while progress in negating the noise, wear, and inefficiency caused by vibration has been made, more is needed. Modeling and Control of Vibration in Mechanical Systems answers the essential needs of practitioners in systems and control with the most comprehensive resource available on the subject. Written as a reference for those working in high precision systems, this uniquely accessible volume: Differentiates between kinds of vibration and their various characteristics and effects Offers a close-up look at mechanical actuation systems that are achieving remarkably high precision positioning performance Includes techniques for rejecting vibrations of different frequency ranges Covers the theoretical developments and principles of control design with detail elaborate enough that readers will be able to apply the techniques with the help of MATLAB® Details a wealth of practical working examples as well as a number of simulation and experimental results with comprehensive evaluations The modern world’s ever-growing spectra of sophisticated engineering systems such as hard disk drives, aeronautic systems, and manufacturing systems have little tolerance for unanticipated vibration of even the slightest magnitude. Accordingly, vibration control continues to draw intensive focus from top control engineers and modelers. This resource demonstrates the remarkable results of that focus to date, and most importantly gives today’s researchers the technology that they need to build upon into the future. Chunling Du is currently researching modeling and advanced servo control of hard disk drives at the Data Storage Institute in Singapore. Lihua Xie is the Director of the Centre for Intelligent Machines and a professor at Nanyang Technological University in Singapore.

Vibration with Control

Vibration with Control PDF Author: Daniel J. Inman
Publisher: John Wiley & Sons
ISBN: 1119108233
Category : Technology & Engineering
Languages : en
Pages : 440

Get Book

Book Description
An advanced look at vibration analysis with a focus on active vibration suppression As modern devices, from cell phones to airplanes, become lighter and more flexible, vibration suppression and analysis becomes more critical. Vibration with Control, 2nd Edition includes modelling, analysis and testing methods. New topics include metastructures and the use of piezoelectric materials, and numerical methods are also discussed. All material is placed on a firm mathematical footing by introducing concepts from linear algebra (matrix theory) and applied functional analysis when required. Key features: Combines vibration modelling and analysis with active control to provide concepts for effective vibration suppression. Introduces the use of piezoelectric materials for vibration sensing and suppression. Provides a unique blend of practical and theoretical developments. Examines nonlinear as well as linear vibration analysis. Provides Matlab instructions for solving problems. Contains examples and problems. PowerPoint Presentation materials and digital solutions manual available for instructors. Vibration with Control, 2nd Edition is an ideal reference and textbook for graduate students in mechanical, aerospace and structural engineering, as well as researchers and practitioners in the field.

Model Predictive Vibration Control

Model Predictive Vibration Control PDF Author: Gergely Takács
Publisher: Springer Science & Business Media
ISBN: 1447123328
Category : Technology & Engineering
Languages : en
Pages : 535

Get Book

Book Description
Real-time model predictive controller (MPC) implementation in active vibration control (AVC) is often rendered difficult by fast sampling speeds and extensive actuator-deformation asymmetry. If the control of lightly damped mechanical structures is assumed, the region of attraction containing the set of allowable initial conditions requires a large prediction horizon, making the already computationally demanding on-line process even more complex. Model Predictive Vibration Control provides insight into the predictive control of lightly damped vibrating structures by exploring computationally efficient algorithms which are capable of low frequency vibration control with guaranteed stability and constraint feasibility. In addition to a theoretical primer on active vibration damping and model predictive control, Model Predictive Vibration Control provides a guide through the necessary steps in understanding the founding ideas of predictive control applied in AVC such as: · the implementation of computationally efficient algorithms · control strategies in simulation and experiment and · typical hardware requirements for piezoceramics actuated smart structures. The use of a simple laboratory model and inclusion of over 170 illustrations provides readers with clear and methodical explanations, making Model Predictive Vibration Control the ideal support material for graduates, researchers and industrial practitioners with an interest in efficient predictive control to be utilized in active vibration attenuation.

Theory of Vibration Protection

Theory of Vibration Protection PDF Author: Igor A. Karnovsky
Publisher: Springer
ISBN: 3319280201
Category : Technology & Engineering
Languages : en
Pages : 674

Get Book

Book Description
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.“p> Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).