High Temperature Mechanical Behaviour of Ceramic Composites

High Temperature Mechanical Behaviour of Ceramic Composites PDF Author: Karl Jakus
Publisher: Elsevier
ISBN: 0080523889
Category : Technology & Engineering
Languages : en
Pages : 558

Get Book

Book Description
High Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.

High Temperature Mechanical Behaviour of Ceramic Composites

High Temperature Mechanical Behaviour of Ceramic Composites PDF Author: Karl Jakus
Publisher: Elsevier
ISBN: 0080523889
Category : Technology & Engineering
Languages : en
Pages : 558

Get Book

Book Description
High Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures PDF Author: Longbiao Li
Publisher:
ISBN: 9789811532757
Category : Aerospace engineering
Languages : en
Pages : 0

Get Book

Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines. .

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811532745
Category : Technology & Engineering
Languages : en
Pages : 373

Get Book

Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.

High Temperature Mechanical Behavior of Ceramic-Matrix Composites

High Temperature Mechanical Behavior of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: John Wiley & Sons
ISBN: 3527349030
Category : Technology & Engineering
Languages : en
Pages : 386

Get Book

Book Description
High Temperature Mechanical Behavior of Ceramic-Matrix Composites Covers the latest research on the high-temperature mechanical behavior of ceramic-matrix composites Due to their high temperature resistance, strength and rigidity, relatively light weight, and corrosion resistance, ceramic-matrix composites (CMCs) are widely used across the aerospace and energy industries. As these advanced composites of ceramics and various fibers become increasingly important in the development of new materials, understanding the high-temperature mechanical behavior and failure mechanisms of CMCs is essential to ensure the reliability and safety of practical applications. High Temperature Mechanical Behavior of Ceramic-Matrix Composites examines the behavior of CMCs at elevated temperature—outlining the latest developments in the field and presenting the results of recent research on different CMC characteristics, material properties, damage states, and temperatures. This up-to-date resource investigates the high-temperature behavior of CMCs in relation to first matrix cracking, matrix multiple cracking, tensile damage and fracture, fatigue hysteresis loops, stress-rupture, vibration damping, and more. This authoritative volume: Details the relationships between various high-temperature conditions and experiment results Features an introduction to the tensile, vibration, fatigue, and stress-rupture behavior of CMCs at elevated temperatures Investigates temperature- and time-dependent cracking stress, deformation, damage, and fracture of fiber-reinforced CMCs Includes full references and internet links to source material Written by a leading international researcher in the field, High Temperature Mechanical Behavior of Ceramic-Matrix Composites is an invaluable resource for materials scientists, surface chemists, organic chemists, aerospace engineers, and other professionals working with CMCs.

Vibration Behavior in Ceramic-Matrix Composites

Vibration Behavior in Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811978387
Category : Technology & Engineering
Languages : en
Pages : 134

Get Book

Book Description
This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.

High Temperature Mechanical Behavior of Ceramic-Matrix Composites

High Temperature Mechanical Behavior of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: John Wiley & Sons
ISBN: 3527831789
Category : Technology & Engineering
Languages : en
Pages : 386

Get Book

Book Description
High Temperature Mechanical Behavior of Ceramic-Matrix Composites Covers the latest research on the high-temperature mechanical behavior of ceramic-matrix composites Due to their high temperature resistance, strength and rigidity, relatively light weight, and corrosion resistance, ceramic-matrix composites (CMCs) are widely used across the aerospace and energy industries. As these advanced composites of ceramics and various fibers become increasingly important in the development of new materials, understanding the high-temperature mechanical behavior and failure mechanisms of CMCs is essential to ensure the reliability and safety of practical applications. High Temperature Mechanical Behavior of Ceramic-Matrix Composites examines the behavior of CMCs at elevated temperature—outlining the latest developments in the field and presenting the results of recent research on different CMC characteristics, material properties, damage states, and temperatures. This up-to-date resource investigates the high-temperature behavior of CMCs in relation to first matrix cracking, matrix multiple cracking, tensile damage and fracture, fatigue hysteresis loops, stress-rupture, vibration damping, and more. This authoritative volume: Details the relationships between various high-temperature conditions and experiment results Features an introduction to the tensile, vibration, fatigue, and stress-rupture behavior of CMCs at elevated temperatures Investigates temperature- and time-dependent cracking stress, deformation, damage, and fracture of fiber-reinforced CMCs Includes full references and internet links to source material Written by a leading international researcher in the field, High Temperature Mechanical Behavior of Ceramic-Matrix Composites is an invaluable resource for materials scientists, surface chemists, organic chemists, aerospace engineers, and other professionals working with CMCs.

Nonlinear Behavior of Ceramic-Matrix Composites

Nonlinear Behavior of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Woodhead Publishing
ISBN: 0323858171
Category : Technology & Engineering
Languages : en
Pages : 252

Get Book

Book Description
Nonlinear Damage Behavior of Ceramic Matrix Composites help readers [researchers, material scientists and design engineers] gain greater understanding on the damage mechanisms inside CMCs so they can better design components used in aeronautics and astronautics. Key areas addressed in the book include: the nonlinear damage behavior of ceramic-matrix composites, including damage mechanisms and models, nonlinear damage behavior of ceramic-matrix composites under tensile and fatigue loading, strain-rate dependent, stochastic loading dependent, and time dependent nonlinear damage behavior, and the effect of pre-exposure and thermal fatigue on non-linear damage behavior of ceramic-matrix composites. Provides comprehensive coverage on damage mechanisms and models under tensile and cyclic fatigue loading which ultimately control nonlinear behavior Covers nonlinear damage analyses of CMC components and experimental observations of damage evolution Presents extensive knowledge on fracture mechanic principles used in the design of aerospace propulsion systems

Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites

Thermal and Mechanical Behavior of Metal Matrix and Ceramic Matrix Composites PDF Author: John M. Kennedy
Publisher: ASTM International
ISBN: 0803113854
Category : Ceramic-matrix composites
Languages : en
Pages : 260

Get Book

Book Description
Of interest to researchers and practitioners in materials science, especially in the aerospace industry, 16 papers from a symposium in Atlanta, Georgia, November 1988 discuss the analysis, modeling, and behavior of both continuous and discontinuous ceramic and metal matrix composites, and methods of

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811621411
Category : Technology & Engineering
Languages : en
Pages : 205

Get Book

Book Description
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCs subjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.

Micromechanics of Ceramic-Matrix Composites at Elevated Temperatures

Micromechanics of Ceramic-Matrix Composites at Elevated Temperatures PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9819712947
Category :
Languages : en
Pages : 139

Get Book

Book Description