The Nature of Physical Computation

The Nature of Physical Computation PDF Author: Oron Shagrir
Publisher: Oxford University Press, USA
ISBN: 9780197552407
Category : Computer science
Languages : en
Pages :

Get Book

Book Description
"Computing systems are everywhere today. Even the brain is thought to be a sort of computing system. But what does it mean to say that a given organ or system computes? What is it about laptops, smartphones, and nervous systems that they are deemed to compute, and why does it seldom occur to us to describe stomachs, hurricanes, rocks, or chairs that way? The book provides an extended argument for the semantic view of computation, which states that semantic properties are involved in the nature of computing systems. Laptops, smartphones, and nervous systems compute because they are accompanied by representations. Stomachs, hurricanes, and rocks, for instance, which do not have semantic properties, do not compute. The first part of the book argues that the linkage between the mathematical theory of computability and the notion of physical computation is weak. Theoretical notions such as algorithms, effective procedure, program, and automaton play only a minor role in identifying physical computation. The second part of the book reviews three influential accounts of physical computation and argues that while none of these accounts is satisfactory, each of them highlights certain key features of physical computation. The final part of the book develops and argues for a semantic account of physical computation and offers a characterization of computational explanations"--

The Nature of Physical Computation

The Nature of Physical Computation PDF Author: Oron Shagrir
Publisher: Oxford University Press, USA
ISBN: 9780197552407
Category : Computer science
Languages : en
Pages :

Get Book

Book Description
"Computing systems are everywhere today. Even the brain is thought to be a sort of computing system. But what does it mean to say that a given organ or system computes? What is it about laptops, smartphones, and nervous systems that they are deemed to compute, and why does it seldom occur to us to describe stomachs, hurricanes, rocks, or chairs that way? The book provides an extended argument for the semantic view of computation, which states that semantic properties are involved in the nature of computing systems. Laptops, smartphones, and nervous systems compute because they are accompanied by representations. Stomachs, hurricanes, and rocks, for instance, which do not have semantic properties, do not compute. The first part of the book argues that the linkage between the mathematical theory of computability and the notion of physical computation is weak. Theoretical notions such as algorithms, effective procedure, program, and automaton play only a minor role in identifying physical computation. The second part of the book reviews three influential accounts of physical computation and argues that while none of these accounts is satisfactory, each of them highlights certain key features of physical computation. The final part of the book develops and argues for a semantic account of physical computation and offers a characterization of computational explanations"--

The Nature of Physical Computation

The Nature of Physical Computation PDF Author: Oron Shagrir
Publisher: Oxford University Press
ISBN: 0197552382
Category : Computers
Languages : en
Pages : 319

Get Book

Book Description
Computing systems are ubiquitous in contemporary life. Even the brain is thought to be a computing system of sorts. But what does it mean to say that a given organ or system "computes"? What is it about laptops, smartphones, and nervous systems that they are deemed to compute - and why does itseldom occur to us to describe stomachs, hurricanes, rocks, or chairs that way? These questions are key to laying the conceptual foundations of computational sciences, including computer science and engineering, and the cognitive and neural sciences.Oron Shagrir here provides an extended argument for the semantic view of computation, which states that semantic properties are involved in the nature of computing systems. The first part of the book provides general background. Although different in scope, these chapters have a common theme-namely,that the linkage between the mathematical theory of computability and the notion of physical computation is weak. The second part of the book reviews existing non-semantic accounts of physical computation. Shagrir analyze three influential accounts in greater depth and argues that none of theseaccounts is satisfactory, but each of them highlights certain key features of physical computation that he eventually adopts in his own semantic account of physical computation - a view that rests on a phenomenon known as simultaneous implementation (or "indeterminacy of computation"). Shagrircompletes the characterization of his account of computation and highlights the distinctive feature of computational explanations.

Physical Computation

Physical Computation PDF Author: Gualtiero Piccinini
Publisher: OUP Oxford
ISBN: 0191633429
Category : Science
Languages : en
Pages : 336

Get Book

Book Description
Gualtiero Piccinini articulates and defends a mechanistic account of concrete, or physical, computation. A physical system is a computing system just in case it is a mechanism one of whose functions is to manipulate vehicles based solely on differences between different portions of the vehicles according to a rule defined over the vehicles. The Nature of Computation discusses previous accounts of computation and argues that the mechanistic account is better. Many kinds of computation are explicated, such as digital vs. analog, serial vs. parallel, neural network computation, program-controlled computation, and more. Piccinini argues that computation does not entail representation or information processing although information processing entails computation. Pancomputationalism, according to which every physical system is computational, is rejected. A modest version of the physical Church-Turing thesis, according to which any function that is physically computable is computable by Turing machines, is defended.

A Computable Universe

A Computable Universe PDF Author: Hector Zenil
Publisher: World Scientific
ISBN: 9814374296
Category : Computers
Languages : en
Pages : 855

Get Book

Book Description
This volume discusses the foundations of computation in relation to nature. It focuses on two main questions: What is computation? and How does nature compute?

The Nature of Computation

The Nature of Computation PDF Author: Cristopher Moore
Publisher: Oxford University Press
ISBN: 0199233217
Category : Computers
Languages : en
Pages : 1004

Get Book

Book Description
The boundary between physics and computer science has become a hotbed of interdisciplinary collaboration. In this book the authors introduce the reader to the fundamental concepts of computational complexity and give in-depth explorations of the major interfaces between computer science and physics.

Physical Computation

Physical Computation PDF Author: Gualtiero Piccinini
Publisher: Oxford University Press, USA
ISBN: 0199658854
Category : Computers
Languages : en
Pages : 324

Get Book

Book Description
Computation permeates our world, but a satisfactory philosophical theory of what it is has been lacking. Gualtiero Piccinini presents a mechanistic account of what makes a physical system a computing system. He argues that computation does not entail representation or information-processing, although information-processing entails computation.

The Physical Signature of Computation

The Physical Signature of Computation PDF Author: Neal G. Anderson
Publisher: Oxford University Press
ISBN: 0192570285
Category : Philosophy
Languages : en
Pages : 343

Get Book

Book Description
In The Physical Signature of Computation, Neal Anderson and Gualtiero Piccinini articulate and defend the robust mapping account--the most systematic, rigorous, and comprehensive account of computational implementation to date. Drawing in part from recent results in physical information theory, they argue that mapping accounts of implementation can be made adequate by incorporating appropriate physical constraints. According to the robust mapping account, the key constraint on mappings from physical to computational states--the key for establishing that a computation is physically implemented--is physical-computational equivalence: evolving physical states bear neither more nor less information about the evolving computation than do the computational states they map onto. When this highly nontrivial constraint is satisfied, among others that are spelled out as part of the account, a physical system can be said to implement a computation in a robust sense, which means that the system bears the physical signature of the computation. Anderson and Piccinini apply their robust mapping account to important questions in physical foundations of computation and cognitive science, including the alleged indeterminacy of computation, pancomputationalism, and the computational theory of mind. They show that physical computation is determinate, nontrivial versions of pancomputationalism fail, and cognition involves computation only insofar as neurocognitive systems bear the physical signature of specific computations. They also argue that both consciousness and physics outstrip computation.

A Computable Universe

A Computable Universe PDF Author: Hector Zenil
Publisher: World Scientific
ISBN: 9814447781
Category : Computers
Languages : en
Pages : 856

Get Book

Book Description
This volume, with a Foreword writer Sir Roger Penrose, discusses the foundations of computation in relation to nature. It focuses on two main questions: What is computation?How does nature compute? The contributors are world-renowned experts who have helped shape a cutting-edge computational understanding of the universe. They discuss computation in the world from a variety of perspectives, ranging from foundational concepts to pragmatic models to ontological conceptions and philosophical implications. The volume provides a state-of-the-art collection of technical papers and non-technical essays, representing a field that assumes information and computation to be key in understanding and explaining the basic structure underpinning physical reality. It also includes a new edition of Konrad Zuse's “Calculating Space” (the MIT translation), and a panel discussion transcription on the topic, featuring worldwide experts in quantum mechanics, physics, cognition, computation and algorithmic complexity. The volume is dedicated to the memory of Alan M Turing — the inventor of universal computation, on the 100th anniversary of his birth, and is part of the Turing Centenary celebrations. Contents:Foreword (R Penrose)PrefaceAcknowledgementsIntroducing the Computable Universe (H Zenil)Historical, Philosophical & Foundational Aspects of Computation:Origins of Digital Computing: Alan Turing, Charles Babbage, & Ada Lovelace (D Swade)Generating, Solving and the Mathematics of Homo Sapiens. E Post's Views on Computation (L De Mol)Machines (R Turner)Effectiveness (N Dershowitz & E Falkovich)Axioms for Computability: Do They Allow a Proof of Church's Thesis? (W Sieg)The Mathematician's Bias — and the Return to Embodied Computation (S B Cooper)Intuitionistic Mathematics and Realizability in the Physical World (A Bauer)What is Computation? Actor Model versus Turing's Model (C Hewitt)Computation in Nature & the Real World:Reaction Systems: A Natural Computing Approach to the Functioning of Living Cells (A Ehrenfeucht, J Kleijn, M Koutny & G Rozenberg)Bacteria, Turing Machines and Hyperbolic Cellular Automata (M Margenstern)Computation and Communication in Unorganized Systems (C Teuscher)The Many Forms of Amorphous Computational Systems (J Wiedermann)Computing on Rings (G J Martínez, A Adamatzky & H V McIntosh)Life as Evolving Software (G J Chaitin)Computability and Algorithmic Complexity in Economics (K V Velupillai & S Zambelli)Blueprint for a Hypercomputer (F A Doria)Computation & Physics & the Physics of Computation:Information-Theoretic Teleodynamics in Natural and Artificial Systems (A F Beavers & C D Harrison)Discrete Theoretical Processes (DTP) (E Fredkin)The Fastest Way of Computing All Universes (J Schmidhuber)The Subjective Computable Universe (M Hutter)What Is Ultimately Possible in Physics? (S Wolfram)Universality, Turing Incompleteness and Observers (K Sutner)Algorithmic Causal Sets for a Computational Spacetime (T Bolognesi)The Computable Universe Hypothesis (M P Szudzik)The Universe is Lawless or “Pantôn chrêmatôn metron anthrôpon einai” (C S Calude, F W Meyerstein & A Salomaa)Is Feasibility in Physics Limited by Fantasy Alone? (C S Calude & K Svozil)The Quantum, Computation & Information:What is Computation? (How) Does Nature Compute? (D Deutsch)The Universe as Quantum Computer (S Lloyd)Quantum Speedup and Temporal Inequalities for Sequential Actions (M Żukowski)The Contextual Computer (A Cabello)A Gödel-Turing Perspective on Quantum States Indistinguishable from Inside (T Breuer)When Humans Do Compute Quantum (P Zizzi)Open Discussion Section:Open Discussion on A Computable Universe (A Bauer, T Bolognesi, A Cabello, C S Calude, L De Mol, F Doria, E Fredkin, C Hewitt, M Hutter, M Margenstern, K Svozil, M Szudzik, C Teuscher, S Wolfram & H Zenil)Live Panel Discussion (transcription):What is Computation? (How) Does Nature Compute? (C S Calude, G J Chaitin, E Fredkin, A J Leggett, R de Ruyter, T Toffoli & S Wolfram)Zuse's Calculating Space:Calculating Space (Rechnender Raum) (K Zuse)Afterword to Konrad Zuse's Calculating Space (A German & H Zenil) Readership: Graduate students who are specialized researchers in computer science, information theory, quantum theory and modern philosophy and the general public who are interested in these subject areas. Keywords:Digital Physics;Computational Universe;Digital Philosophy;Reality Theories of the Universe;Models of the World;Thring Computation RandomnessKey Features:The authors are all prominent researchersNo competing titlesState-of-the-art collection of technical papers and non-technical essays

Physical Computation and Cognitive Science

Physical Computation and Cognitive Science PDF Author: Nir Fresco
Publisher: Springer Science & Business Media
ISBN: 3642413757
Category : Technology & Engineering
Languages : en
Pages : 229

Get Book

Book Description
This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time. "This book provides a thorough and timely analysis of differing accounts of computation while advancing the important role that information plays in understanding computation. Fresco’s two-pronged approach will appeal to philosophically inclined computer scientists who want to better understand common theoretical claims in cognitive science.” Marty J. Wolf, Professor of Computer Science, Bemidji State University “An original and admirably clear discussion of central issues in the foundations of contemporary cognitive science.” Frances Egan, Professor of Philosophy, Rutgers, The State University of New Jersey

The Computational Theory of Mind

The Computational Theory of Mind PDF Author: Matteo Colombo
Publisher: Cambridge University Press
ISBN: 1009192833
Category : Philosophy
Languages : en
Pages : 90

Get Book

Book Description
The Computational Theory of Mind says that the mind is a computing system. It has a long history going back to the idea that thought is a kind of computation. Its modern incarnation relies on analogies with contemporary computing technology and the use of computational models. It comes in many versions, some more plausible than others. This Element supports the theory primarily by its contribution to solving the mind-body problem, its ability to explain mental phenomena, and the success of computational modelling and artificial intelligence. To be turned into an adequate theory, it needs to be made compatible with the tractability of cognition, the situatedness and dynamical aspects of the mind, the way the brain works, intentionality, and consciousness.