System Reduction for Nanoscale IC Design

System Reduction for Nanoscale IC Design PDF Author: Peter Benner
Publisher: Springer
ISBN: 3319072366
Category : Computers
Languages : en
Pages : 197

Get Book

Book Description
This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle. The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.

System Reduction for Nanoscale IC Design

System Reduction for Nanoscale IC Design PDF Author: Peter Benner
Publisher: Springer
ISBN: 3319072366
Category : Computers
Languages : en
Pages : 197

Get Book

Book Description
This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle. The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.

Model Reduction for Circuit Simulation

Model Reduction for Circuit Simulation PDF Author: Peter Benner
Publisher: Springer Science & Business Media
ISBN: 940070089X
Category : Technology & Engineering
Languages : en
Pages : 317

Get Book

Book Description
Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the device while requiring a significantly lower simulation time than the full model. With Model Reduction for Circuit Simulation we survey the state of the art in the challenging research field of MOR for ICs, and also address its future research directions. Special emphasis is taken on aspects stemming from miniturisations to the nano scale. Contributions cover complexity reduction using e.g., balanced truncation, Krylov-techniques or POD approaches. For semiconductor applications a focus is on generalising current techniques to differential-algebraic equations, on including design parameters, on preserving stability, and on including nonlinearity by means of piecewise linearisations along solution trajectories (TPWL) and interpolation techniques for nonlinear parts. Furthermore the influence of interconnects and power grids on the physical properties of the device is considered, and also top-down system design approaches in which detailed block descriptions are combined with behavioral models. Further topics consider MOR and the combination of approaches from optimisation and statistics, and the inclusion of PDE models with emphasis on MOR for the resulting partial differential algebraic systems. The methods which currently are being developed have also relevance in other application areas such as mechanical multibody systems, and systems arising in chemistry and to biology. The current number of books in the area of MOR for ICs is very limited, so that this volume helps to fill a gap in providing the state of the art material, and to stimulate further research in this area of MOR. Model Reduction for Circuit Simulation also reflects and documents the vivid interaction between three active research projects in this area, namely the EU-Marie Curie Action ToK project O-MOORE-NICE (members in Belgium, The Netherlands and Germany), the EU-Marie Curie Action RTN-project COMSON (members in The Netherlands, Italy, Germany, and Romania), and the German federal project System reduction in nano-electronics (SyreNe).

System- and Data-Driven Methods and Algorithms

System- and Data-Driven Methods and Algorithms PDF Author: Peter Benner
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110497719
Category : Mathematics
Languages : en
Pages : 346

Get Book

Book Description
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques.

Snapshot-Based Methods and Algorithms

Snapshot-Based Methods and Algorithms PDF Author: Peter Benner
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110671506
Category : Mathematics
Languages : en
Pages : 369

Get Book

Book Description
An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This second volume focuses on applications in engineering, biomedical engineering, computational physics and computer science.

Progress in Industrial Mathematics at ECMI 2010

Progress in Industrial Mathematics at ECMI 2010 PDF Author: Michael Günther
Publisher: Springer Science & Business Media
ISBN: 3642251005
Category : Mathematics
Languages : en
Pages : 670

Get Book

Book Description
ECMI, the European Consortium for Mathematics in Industry, is the European brand associated with applied mathematics for industry and organizes highly successful biannual conferences. In this series, the ECMI 2010, the 16th European Conference on Mathematics for Industry, was held in the historic city hall of Wuppertal in Germany. It covered the mathematics of a wide range of applications and methods, from circuit and electromagnetic device simulation to model order reduction for chip design, uncertainties and stochastics, production, fluids, life and environmental sciences, and dedicated and versatile methods. These proceedings of ECMI 2010 emphasize mathematics as an innovation enabler for industry and business, and as an absolutely essential pre-requiste for Europe on its way to becoming the leading knowledge-based economy in the world.

Nanoscale Memory Repair

Nanoscale Memory Repair PDF Author: Masashi Horiguchi
Publisher: Springer Science & Business Media
ISBN: 1441979581
Category : Technology & Engineering
Languages : en
Pages : 221

Get Book

Book Description
Yield and reliability of memories have degraded with device and voltage scaling in the nano-scale era, due to ever-increasing hard/soft errors and device parameter variations. This book systematically describes these yield and reliability issues in terms of mathematics and engineering, as well as an array of repair techniques, based on the authors’ long careers in developing memories and low-voltage CMOS circuits. Nanoscale Memory Repair gives a detailed explanation of the various yield models and calculations, as well as various, practical logic and circuits that are critical for higher yield and reliability.

Reliability of Nanoscale Circuits and Systems

Reliability of Nanoscale Circuits and Systems PDF Author: Miloš Stanisavljević
Publisher: Springer Science & Business Media
ISBN: 1441962174
Category : Technology & Engineering
Languages : en
Pages : 195

Get Book

Book Description
This book is intended to give a general overview of reliability, faults, fault models, nanotechnology, nanodevices, fault-tolerant architectures and reliability evaluation techniques. Additionally, the book provides an in depth state-of-the-art research results and methods for fault tolerance as well as the methodology for designing fault-tolerant systems out of highly unreliable components.

Nanoscale VLSI

Nanoscale VLSI PDF Author: Rohit Dhiman
Publisher: Springer Nature
ISBN: 9811579377
Category : Technology & Engineering
Languages : en
Pages : 319

Get Book

Book Description
This book describes methodologies in the design of VLSI devices, circuits and their applications at nanoscale levels. The book begins with the discussion on the dominant role of power dissipation in highly scaled devices.The 15 Chapters of the book are classified under four sections that cover design, modeling, and simulation of electronic, magnetic and compound semiconductors for their applications in VLSI devices, circuits, and systems. This comprehensive volume eloquently presents the design methodologies for ultra–low power VLSI design, potential post–CMOS devices, and their applications from the architectural and system perspectives. The book shall serve as an invaluable reference book for the graduate students, Ph.D./ M.S./ M.Tech. Scholars, researchers, and practicing engineers working in the frontier areas of nanoscale VLSI design.

Numerical Methods for Large-Scale Linear Time-Varying Control Systems and related Differential Matrix Equations

Numerical Methods for Large-Scale Linear Time-Varying Control Systems and related Differential Matrix Equations PDF Author: Norman Lang
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832547002
Category : Mathematics
Languages : en
Pages : 227

Get Book

Book Description
This thesis is concerned with the linear-quadratic optimal control and model order reduction (MOR) of large-scale linear time-varying (LTV) control systems. In the first two parts, particular attention is paid to a tracking-type finite-time optimal control problem with application to an inverse heat conduction problem and the balanced truncation (BT) MOR method for LTV systems. In both fields of application the efficient solution of differential matrix equations (DMEs) is of major importance. The third and largest part deals with the application of implicit time integration methods to these matrix-valued ordinary differential equations. In this context, in particular, the rather new class of peer methods is introduced. Further, for the efficient solution of large-scale DMEs, in practice low-rank solution strategies are inevitable. Here, low-rank time integrators, based on a symmetric indefinte factored representation of the right hand sides and the solution approximations of the DMEs, are presented. In contrast to the classical low-rank Cholesky-type factorization, this avoids complex arithmetic and tricky implementations and algorithms. Both low-rank approaches are compared for numerous implicit time integration methods.

Low-Power High-Level Synthesis for Nanoscale CMOS Circuits

Low-Power High-Level Synthesis for Nanoscale CMOS Circuits PDF Author: Saraju P. Mohanty
Publisher: Springer Science & Business Media
ISBN: 0387764747
Category : Technology & Engineering
Languages : en
Pages : 325

Get Book

Book Description
This self-contained book addresses the need for analysis, characterization, estimation, and optimization of the various forms of power dissipation in the presence of process variations of nano-CMOS technologies. The authors show very large-scale integration (VLSI) researchers and engineers how to minimize the different types of power consumption of digital circuits. The material deals primarily with high-level (architectural or behavioral) energy dissipation.