**Author**: Frerich Keil

**Publisher:**

**ISBN:**

**Category :**

**Languages :**en

**Pages :**

**Book Description**

The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as computer-aided process design, combustion and flame, image processing, optimization, control, and neural networks. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.

The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as computer-aided process design, combustion and flame, image processing, optimization, control, and neural networks. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.

The application of modern methods in numerical mathematics on problems in chemical engineering is essential for designing, analyzing and running chemical processes and even entire plants. Scientific Computing in Chemical Engineering II gives the state of the art from the point of view of numerical mathematicians as well as that of engineers. The present volume as part of a two-volume edition covers topics such as the simulation of reactive flows, reaction engineering, reaction diffusion problems, and molecular properties. The volume is aimed at scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.

"Scientific Computing in Chemical Engineering" gives the state-of-the-art from the point of view of the numerical mathematicians as well as from the engineers. The application of modern methods in numerical mathematics on problems in chemical engineering, especially reactor modeling, process simulation, process optimization and the use of parallel computing is detailed. For scientists, practitioners and graduate students in chemical engineering, industrial engineering and numerical mathematics.

This book constitutes the thoroughly refereed post-proceedings of the Third International Conference on Large-Scale Scientific Computing, LSSC 2001, held in Sozopol, Bulgaria, in June 2001. The 7 invited full papers and 45 selected revised papers were carefully reviewed for inclusion in the book. The papers are organized in topical sections on robust preconditioning algorithms, Monte-Carlo methods, advanced programming environments for scientific computing, large-scale computations in air pollution modeling, large-scale computations in mechanical engineering, and numerical methods for incompressible flow.

Enabling Technologies for Computational Science assesses future application computing needs, identifies research directions in problem-solving environments (PSEs), addresses multi-disciplinary environments operating on the Web, proposes methodologies and software architectures for building adaptive and human-centered PSEs, and describes the role of symbolic computing in scientific and engineering PSEs. The book also includes an extensive bibliography of over 400 references. Enabling Technologies for Computational Science illustrates the extremely broad and interdisciplinary nature of the creation and application of PSEs. Authors represent academia, government laboratories and industry, and come from eight distinct disciplines (chemical engineering, computer science, ecology, electrical engineering, mathematics, mechanical engineering, psychology and wood sciences). This breadth and diversity extends into the computer science aspects of PSEs. These papers deal with topics such as artificial intelligence, computer-human interaction, control, data mining, graphics, language design and implementation, networking, numerical analysis, performance evaluation, and symbolic computing. Enabling Technologies for Computational Science provides an assessment of the state of the art and a road map to the future in the area of problem-solving environments for scientific computing. This book is suitable as a reference for scientists from a variety of disciplines interested in using PSEs for their research.