Quarks, Gluons and Lattices

Quarks, Gluons and Lattices PDF Author: Michael Creutz
Publisher: Cambridge University Press
ISBN: 100929038X
Category : Science
Languages : en
Pages : 179

Get Book

Book Description
This 1983 book, reissued as OA, introduces the lattice approach to QFT for elementary particle and solid state physicists.

Quarks, Gluons and Lattices

Quarks, Gluons and Lattices PDF Author: Michael Creutz
Publisher: Cambridge University Press
ISBN: 100929038X
Category : Science
Languages : en
Pages : 179

Get Book

Book Description
This 1983 book, reissued as OA, introduces the lattice approach to QFT for elementary particle and solid state physicists.

Quarks and Gluons

Quarks and Gluons PDF Author: M. Y. Han
Publisher: World Scientific
ISBN: 9789810237455
Category : Science
Languages : en
Pages : 172

Get Book

Book Description
"In his new book, the author introduces us to the world of particles He traces the century of progress in our search for the basic units of matter as well as those of the forces that act on it, starting from the electron and photon, the first entry in the list of elementary quantum particles, and ending up with the quarks and gluons discovered in the last decades of this century. He gives the curious layman a clear understanding of the forefront of our knowledge about the structure of matter at its deepest level".Y NambuUniversity of Chicago"This is a readable little book on particle physics and is aimed at those with no previous exposure to the subject Nevertheless, as one would expect from a leading contributor to the field, Han takes care to get things right even when using simple language, as for example in his discussion of spin".CERN Courier

Quark-Gluon Plasma

Quark-Gluon Plasma PDF Author: Kohsuke Yagi
Publisher: Cambridge University Press
ISBN: 9780521561082
Category : Science
Languages : en
Pages : 478

Get Book

Book Description
Quark-Gluon Plasma introduces the primordial matter, composed of two types of elementary particles, created at the time of the Big Bang. During the evolution of the universe, Quark-Gluon Plasma (QGP) undergoes a transition to hadronic matter governed by quantum chromodynamics, the law of strong interactions. After an introduction to gauge theories, various aspects of quantum chromodynamic phase transitions are illustrated in a self-contained manner. The cosmological approach and renormalization group are discussed, as well as the cosmological and astrophysical implications of QGP, on the basis of Einstein's equations. Recent developments towards the formation of QGP in ultrarelativistic heavy ion collisions are also presented in detail. This text is suitable as an introduction for graduate students, as well as providing a valuable reference for researchers already working in this and related fields. It includes eight appendices and over a hundred exercises.

The Theory of Quark and Gluon Interactions

The Theory of Quark and Gluon Interactions PDF Author: F.J. Yndurain
Publisher: Springer Science & Business Media
ISBN: 3662029405
Category : Science
Languages : en
Pages : 331

Get Book

Book Description
The present book is not merely an elaboration of the 1982 text Quantum Chromodynamics: An Introduction to the Theory of Quarks and Gluons. In fact, a lot of material has been added: some of which is entirely new, and some of which is an extension of topics in the older text. Among the latter there are two sections dealing with the background field method, and the expansion of the section devoted to processes describable by perturbative QCD (other than deep inelastic scattering) into a whole chapter, containing a detailed description of Drell-Van scattering, jet physics, exclusive processes, QCD sum rules, etc. Besides this, we have added a completely new chapter on constituent models of hadrons, including a derivation of the quark quark potential, and, also entirely new, a half-chapter containing a detailed introduction to lattice QCD. An extra short chapter on the parameters of QCD and an appendix on group integration contribute to making the present book a really new text, sufficiently so to justify the change of title to The Theory of Quark and Gluon Interactions, a change that also emphasizes the consolidation of QCD as the theory of strong interactions. Of course even with the inclusion of the new material there are whole areas of quark and gluon physics not covered at all.

Nuclear Physics

Nuclear Physics PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309173663
Category : Science
Languages : en
Pages : 222

Get Book

Book Description
Dramatic progress has been made in all branches of physics since the National Research Council's 1986 decadal survey of the field. The Physics in a New Era series explores these advances and looks ahead to future goals. The series includes assessments of the major subfields and reports on several smaller subfields, and preparation has begun on an overview volume on the unity of physics, its relationships to other fields, and its contributions to national needs. Nuclear Physics is the latest volume of the series. The book describes current activity in understanding nuclear structure and symmetries, the behavior of matter at extreme densities, the role of nuclear physics in astrophysics and cosmology, and the instrumentation and facilities used by the field. It makes recommendations on the resources needed for experimental and theoretical advances in the coming decade.

Hadrons and Quark–Gluon Plasma

Hadrons and Quark–Gluon Plasma PDF Author: Jean Letessier
Publisher: Cambridge University Press
ISBN: 1009290703
Category : Science
Languages : en
Pages : 415

Get Book

Book Description
This 2002 monograph, now reissued as OA, explores the primordial state of hadronic matter called quark-gluon plasma.

Taming the Forces Between Quarks and Gluons

Taming the Forces Between Quarks and Gluons PDF Author: Pierre Baal
Publisher:
ISBN: 9789814447867
Category : Science
Languages : en
Pages : 0

Get Book

Book Description
This volume is a collection of selected papers by Pierre van Baal on the subject of quark-gluon interactions. He concentrates on semi-perturbative phenomena that occur when these particles are confined to a box. He introduced in 1998 the notion of calorons to explain what happens in the high temperature phase of the quark-gluon plasma. Van Baal's discoveries of the mathematical intricacies of twisted gluon field configurations have left their mark on the field, opening new directions for numerical simulations. This reprint is intended to be a comprehensive introduction for all those who wish to have deeper understanding of quark-gluon dynamics.

Hadrons and Quark–Gluon Plasma

Hadrons and Quark–Gluon Plasma PDF Author: Jean Letessier
Publisher: Cambridge University Press
ISBN: 1139433032
Category : Science
Languages : en
Pages : 417

Get Book

Book Description
This book provides an accessible introduction to the rapidly expanding field of hadronic interactions and the quark–gluon plasma. Covering the basics as well as more advanced material, it is ideal for graduate students as well as researchers already working in this and related fields.

Quark-Gluon Plasma: Theoretical Foundations

Quark-Gluon Plasma: Theoretical Foundations PDF Author: J. Kapusta
Publisher: Gulf Professional Publishing
ISBN: 9780444511102
Category : Science
Languages : en
Pages : 850

Get Book

Book Description
The purpose of this volume is to trace the development of the theoretical understanding of quark-gluon plasma, both in terms of the equation of state and thermal correlation functions and in terms of its manifestation in high energy nuclear collisions. Who among us has not wondered how tall a mountain is on a neutron star, what happens when matter is heated and compressed to higher and higher densities, what happens when an object falls into a black hole, or what happened eons ago in the early universe? The study of quark-gluon plasma is related in one way or another to these and other thought provoking questions. Oftentimes the most eloquent exposition is given in the original papers. To this end a selection is made of what are the most important pioneering papers in this field. The early 1950s was an era when high energy multiparticle production in cosmic ray interactions attracted the attention of some of the brightest minds in physics, and so it should be no surprise that the first reprinted papers deal with the introduction of statistical models of particle production. The quark model arose in the 1960s, while QCD as such was recognized as the theory of the strong interactions in the 1970's. The behavior of matter at high temperatures and supranuclear densities became of wide interest in the nuclear and particle physics communities starting in the 1970s, which is when the concept of quark-gluon plasma became established. The history of the field has been traced up to the early 1990s. There are three reasons for stopping at that point in time. First, most of the key theoretical concepts and formalisms arose before 1993, although many of them continue to be developed today and hopefully well into the future. Second, papers written after 1992 are much more readily available than those writen before due to the advent of the World Wide Web and its electronic preprint databases and journals. Finally, in making this collection of reprints available as hardcopy one is limited in the number of pages, and some papers in the present selection should have been deleted in order to make room for post-1993 papers. For the same reason the subject focus must of necessity be limited, which means that in this reprint collection two wide subject areas are not addressed: the behavior of nuclear matter under extreme conditions is not reported, nor is quark matter in neutron stars. The broad categories into which the material has been placed, reflect the diverse studies of quark-gluon plasma and its manifestation. They are: phase-space models of particle production, perturbative QCD plasma, lattice gauge theory, fluid dynamics and flow, strangeness, heavy flavor (charm), electromagnetic signals, parton cascade and minijets, parton energy loss and jet quenching, Hanbury Brown--Twiss (HBT) interferometry, disoriented chiral condensates, phase transition dynamics and cosmology, and color superconductivity. Each chapter is prefaced by an introduction, which contains a list of significant papers which is more complete than the reprinted papers, though by no means exhaustive. It also contains citations to most relevant papers published up to the date of completion of this volume (fall 2002). It is hoped that the short reviews will help bring the reader up to date on the latest developments. The selection of papers cited in each chapter, and in particular the ones selected for reprinting, is solely the responsibility of the Editors. It is based on their best judgement and experience in this field dating back to the mid-1970s. In order to be reprinted a paper must have been pioneering in the sense of originality and impact on the field. Generally they have been cited over a hundred times by other papers published in refereed journals. The final selection was reviewed and discussed among the Editors repeatedly. Just because a paper is not included does not mean they do not know of it or do not have a high regard for it. All of the papers cited or reprinted are original research contributions. There are three other types of publications listed. The first is a compilation of books. The second is a list of reviews, many of which contain a significant amount of original material. The third is a list of the proceedings of the series of Quark Matter meetings, the primary series of international conferences in this field that is attended by both theorists and experimentalists.

The Theory of Almost Everything

The Theory of Almost Everything PDF Author: Robert Oerter
Publisher: Penguin
ISBN: 1101126744
Category : Science
Languages : en
Pages : 301

Get Book

Book Description
There are two scientific theories that, taken together, explain the entire universe. The first, which describes the force of gravity, is widely known: Einstein’s General Theory of Relativity. But the theory that explains everything else—the Standard Model of Elementary Particles—is virtually unknown among the general public. In The Theory of Almost Everything, Robert Oerter shows how what were once thought to be separate forces of nature were combined into a single theory by some of the most brilliant minds of the twentieth century. Rich with accessible analogies and lucid prose, The Theory of Almost Everything celebrates a heretofore unsung achievement in human knowledge—and reveals the sublime structure that underlies the world as we know it.