Quantum Transport in Nanostructures and Molecules

Quantum Transport in Nanostructures and Molecules PDF Author: LAMBERT
Publisher: Myprint
ISBN: 9780750336406
Category :
Languages : en
Pages : 446

Get Book

Book Description

Quantum Transport in Nanostructures and Molecules

Quantum Transport in Nanostructures and Molecules PDF Author: LAMBERT
Publisher: Myprint
ISBN: 9780750336406
Category :
Languages : en
Pages : 446

Get Book

Book Description


Quantum Transport in Nanostructures and Molecules

Quantum Transport in Nanostructures and Molecules PDF Author: Colin John Lambert
Publisher:
ISBN: 9780750336383
Category : SCIENCE
Languages : en
Pages :

Get Book

Book Description
This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport.

Theory of Quantum Transport at Nanoscale

Theory of Quantum Transport at Nanoscale PDF Author: Dmitry Ryndyk
Publisher: Springer
ISBN: 3319240889
Category : Science
Languages : en
Pages : 246

Get Book

Book Description
This book is an introduction to a rapidly developing field of modern theoretical physics – the theory of quantum transport at nanoscale. The theoretical methods considered in the book are in the basis of our understanding of charge, spin and heat transport in nanostructures and nanostructured materials and are widely used in nanoelectronics, molecular electronics, spin-dependent electronics (spintronics) and bio-electronics. The book is based on lectures for graduate and post-graduate students at the University of Regensburg and the Technische Universität Dresden (TU Dresden). The first part is devoted to the basic concepts of quantum transport: Landauer-Büttiker method and matrix Green function formalism for coherent transport, Tunneling (Transfer) Hamiltonian and master equation methods for tunneling, Coulomb blockade, vibrons and polarons. The results in this part are obtained as possible without sophisticated techniques, such as nonequilibrium Green functions, which are considered in detail in the second part. A general introduction into the nonequilibrium Green function theory is given. The approach based on the equation-of-motion technique, as well as more sophisticated one based on the Dyson-Keldysh diagrammatic technique are presented. The main attention is paid to the theoretical methods able to describe the nonequilibrium (at finite voltage) electron transport through interacting nanosystems, specifically the correlation effects due to electron-electron and electron-vibron interactions.

Quantum Transport Through Nanostructures

Quantum Transport Through Nanostructures PDF Author: Daniel Boese
Publisher:
ISBN: 9783826597206
Category : Nanowires
Languages : en
Pages : 160

Get Book

Book Description


Electron Transport in Nanostructures and Mesoscopic Devices

Electron Transport in Nanostructures and Mesoscopic Devices PDF Author: Thierry Ouisse
Publisher: John Wiley & Sons
ISBN: 111862338X
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book

Book Description
This book introduces researchers and students to the physical principles which govern the operation of solid-state devices whose overall length is smaller than the electron mean free path. In quantum systems such as these, electron wave behavior prevails, and transport properties must be assessed by calculating transmission amplitudes rather than microscopic conductivity. Emphasis is placed on detailing the physical laws that apply under these circumstances, and on giving a clear account of the most important phenomena. The coverage is comprehensive, with mathematics and theoretical material systematically kept at the most accessible level. The various physical effects are clearly differentiated, ranging from transmission formalism to the Coulomb blockade effect and current noise fluctuations. Practical exercises and solutions have also been included to facilitate the reader's understanding.

Quantum Transport

Quantum Transport PDF Author: Supriyo Datta
Publisher: Cambridge University Press
ISBN: 1139443240
Category : Technology & Engineering
Languages : en
Pages :

Get Book

Book Description
This book presents the conceptual framework underlying the atomistic theory of matter, emphasizing those aspects that relate to current flow. This includes some of the most advanced concepts of non-equilibrium quantum statistical mechanics. No prior acquaintance with quantum mechanics is assumed. Chapter 1 provides a description of quantum transport in elementary terms accessible to a beginner. The book then works its way from hydrogen to nanostructures, with extensive coverage of current flow. The final chapter summarizes the equations for quantum transport with illustrative examples showing how conductors evolve from the atomic to the ohmic regime as they get larger. Many numerical examples are used to provide concrete illustrations and the corresponding Matlab codes can be downloaded from the web. Videostreamed lectures, keyed to specific sections of the book, are also available through the web. This book is primarily aimed at senior and graduate students.

Advanced Physics of Electron Transport in Semiconductors and Nanostructures

Advanced Physics of Electron Transport in Semiconductors and Nanostructures PDF Author: Massimo V. Fischetti
Publisher: Springer
ISBN: 3319011014
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book

Book Description
This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Theory of Quantum Transport in Metallic and Hybrid Nanostructures

Theory of Quantum Transport in Metallic and Hybrid Nanostructures PDF Author: Andreas Glatz
Publisher: Springer Science & Business Media
ISBN: 1402047797
Category : Science
Languages : en
Pages : 307

Get Book

Book Description
The book reflects scientific developments in the physics of metallic compound based nanodevices presented at the NATO-sponsored Workshop on nanophysics held in Russia in the summer of 2003. The program tackles the most appealing problems. It brings together specialists and provides an opportunity for young researchers from the partner countries to interact with them and get actively involved in the most attractive and promising interdisciplinary area of contemporary condensed matter physics.

Quantum Transport Nanostructures Molechb

Quantum Transport Nanostructures Molechb PDF Author: LAMBERT
Publisher: IOP Publishing Limited
ISBN: 9780750336376
Category : Science
Languages : en
Pages : 190

Get Book

Book Description
This reference text presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. The flow of electricity through molecules is explained at the boundary of physics and chemistry, providing an authoritative introduction to molecular electronics for physicists, and quantum transport for chemists. Professor Lambert provides a pedagogical account of the fundamental concepts needed to understand quantum transport and thermoelectricity in molecular-scale and nanoscale structures. The material provides researchers and advanced students with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter and computational chemistry. After reading the book, the reader will be familiar with the basic concepts of molecular-orbital theory and scattering theory, which underpin current theories of quantum transport. Key Features  Introduces molecular electronics for physicists, and quantum transport for chemists. Presents a conceptual framework for understanding room-temperature electron and phonon transport through molecules and other quantum objects. Provides a pedagogical account of quantum-interference-enhanced electrical and thermal properties of single molecules and self-assembled monolayers. Provides readers with an understanding of how quantum transport relates to other areas of materials modelling, condensed matter or computational chemistry. Discusses concepts needed to engineer the properties of molecules and create new functions. Includes MATLAB codes to allow the reader to expand the examples presented in the book.

Molecular Electronics

Molecular Electronics PDF Author: Juan Carlos Cuevas
Publisher: World Scientific
ISBN: 9814282588
Category : Science
Languages : en
Pages : 724

Get Book

Book Description
This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.