Practical Motion Planning in Robotics

Practical Motion Planning in Robotics PDF Author: Kamal Gupta
Publisher: Chichester, England ; Toronto : J. Wiley
ISBN:
Category : Computers
Languages : en
Pages : 376

Get Book

Book Description
Practical Motion Planning in Robotics Current Approaches and Future Directions Edited by Kamal Gupta Simon Fraser University, Burnaby, Canada Angel P. del Pobil Jaume-l University, Castellon, Spain Designed to bridge the gap between research and industry, Practical Motion Planning in Robotics brings theoretical advances to bear on real-world applications. Capitalizing on recent progress, this comprehensive study emphasizes the practical aspects of techniques for collision detection, obstacle avoidance, path planning and manipulation planning. The broad approach spans both model- and sensor-based motion planning, collision detection and geometric complexity, and future directions. Features include: - Review of state-of-the-art techniques and coverage of the main issues to be considered in the development of motion planners for use in real applications - Focus on gross motion planning for articulated arms enabling robots to perform non-contact tasks with relatively high tolerances plus brief consideration of mobile robots - The use of efficient algorithms to tackle incremental changes in the environment - Illlustration of robot motion planning applications in virtual prototyping and the shipbuilding industry - Demonstration of efficient path planners combining both local and global planning approaches in conjunction with efficient techniques for collision detection and distance computations - International contributions from academia and industry Combining theory and practice, this timely book will appeal to academic researchers and practising engineers in the fields of robotic systems, mechatronics and computer science.

Practical Motion Planning in Robotics

Practical Motion Planning in Robotics PDF Author: Kamal Gupta
Publisher: Chichester, England ; Toronto : J. Wiley
ISBN:
Category : Computers
Languages : en
Pages : 376

Get Book

Book Description
Practical Motion Planning in Robotics Current Approaches and Future Directions Edited by Kamal Gupta Simon Fraser University, Burnaby, Canada Angel P. del Pobil Jaume-l University, Castellon, Spain Designed to bridge the gap between research and industry, Practical Motion Planning in Robotics brings theoretical advances to bear on real-world applications. Capitalizing on recent progress, this comprehensive study emphasizes the practical aspects of techniques for collision detection, obstacle avoidance, path planning and manipulation planning. The broad approach spans both model- and sensor-based motion planning, collision detection and geometric complexity, and future directions. Features include: - Review of state-of-the-art techniques and coverage of the main issues to be considered in the development of motion planners for use in real applications - Focus on gross motion planning for articulated arms enabling robots to perform non-contact tasks with relatively high tolerances plus brief consideration of mobile robots - The use of efficient algorithms to tackle incremental changes in the environment - Illlustration of robot motion planning applications in virtual prototyping and the shipbuilding industry - Demonstration of efficient path planners combining both local and global planning approaches in conjunction with efficient techniques for collision detection and distance computations - International contributions from academia and industry Combining theory and practice, this timely book will appeal to academic researchers and practising engineers in the fields of robotic systems, mechatronics and computer science.

Motion and Operation Planning of Robotic Systems

Motion and Operation Planning of Robotic Systems PDF Author: Giuseppe Carbone
Publisher: Springer
ISBN: 3319147056
Category : Technology & Engineering
Languages : en
Pages : 522

Get Book

Book Description
This book addresses the broad multi-disciplinary topic of robotics, and presents the basic techniques for motion and operation planning in robotics systems. Gathering contributions from experts in diverse and wide ranging fields, it offers an overview of the most recent and cutting-edge practical applications of these methodologies. It covers both theoretical and practical approaches, and elucidates the transition from theory to implementation. An extensive analysis is provided, including humanoids, manipulators, aerial robots and ground mobile robots. ‘Motion and Operation Planning of Robotic Systems’ addresses the following topics: *The theoretical background of robotics. *Application of motion planning techniques to manipulators, such as serial and parallel manipulators. *Mobile robots planning, including robotic applications related to aerial robots, large scale robots and traditional wheeled robots. *Motion planning for humanoid robots. An invaluable reference text for graduate students and researchers in robotics, this book is also intended for researchers studying robotics control design, user interfaces, modelling, simulation, sensors, humanoid robotics.

Robot Motion Planning

Robot Motion Planning PDF Author: Jean-Claude Latombe
Publisher: Springer Science & Business Media
ISBN: 1461540224
Category : Technology & Engineering
Languages : en
Pages : 668

Get Book

Book Description
One of the ultimate goals in Robotics is to create autonomous robots. Such robots will accept high-level descriptions of tasks and will execute them without further human intervention. The input descriptions will specify what the user wants done rather than how to do it. The robots will be any kind of versatile mechanical device equipped with actuators and sensors under the control of a computing system. Making progress toward autonomous robots is of major practical inter est in a wide variety of application domains including manufacturing, construction, waste management, space exploration, undersea work, as sistance for the disabled, and medical surgery. It is also of great technical interest, especially for Computer Science, because it raises challenging and rich computational issues from which new concepts of broad useful ness are likely to emerge. Developing the technologies necessary for autonomous robots is a formidable undertaking with deep interweaved ramifications in auto mated reasoning, perception and control. It raises many important prob lems. One of them - motion planning - is the central theme of this book. It can be loosely stated as follows: How can a robot decide what motions to perform in order to achieve goal arrangements of physical objects? This capability is eminently necessary since, by definition, a robot accomplishes tasks by moving in the real world. The minimum one would expect from an autonomous robot is the ability to plan its x Preface own motions.

Motion Planning for Humanoid Robots

Motion Planning for Humanoid Robots PDF Author: Kensuke Harada
Publisher: Springer Science & Business Media
ISBN: 1849962200
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book

Book Description
Research on humanoid robots has been mostly with the aim of developing robots that can replace humans in the performance of certain tasks. Motion planning for these robots can be quite difficult, due to their complex kinematics, dynamics and environment. It is consequently one of the key research topics in humanoid robotics research and the last few years have witnessed considerable progress in the field. Motion Planning for Humanoid Robots surveys the remarkable recent advancement in both the theoretical and the practical aspects of humanoid motion planning. Various motion planning frameworks are presented in Motion Planning for Humanoid Robots, including one for skill coordination and learning, and one for manipulating and grasping tasks. The problem of planning sequences of contacts that support acyclic motion in a highly constrained environment is addressed and a motion planner that enables a humanoid robot to push an object to a desired location on a cluttered table is described. The main areas of interest include: • whole body motion planning, • task planning, • biped gait planning, and • sensor feedback for motion planning. Torque-level control of multi-contact behavior, autonomous manipulation of moving obstacles, and movement control and planning architecture are also covered. Motion Planning for Humanoid Robots will help readers to understand the current research on humanoid motion planning. It is written for industrial engineers, advanced undergraduate and postgraduate students.

The Complexity of Robot Motion Planning

The Complexity of Robot Motion Planning PDF Author: John Canny
Publisher: MIT Press
ISBN: 9780262031363
Category : Computers
Languages : en
Pages : 220

Get Book

Book Description
The Complexity of Robot Motion Planning makes original contributions both to roboticsand to the analysis of algorithms. In this groundbreaking monograph John Canny resolveslong-standing problems concerning the complexity of motion planning and, for the central problem offinding a collision free path for a jointed robot in the presence of obstacles, obtains exponentialspeedups over existing algorithms by applying high-powered new mathematical techniques.Canny's newalgorithm for this "generalized movers' problem," the most-studied and basic robot motion planningproblem, has a single exponential running time, and is polynomial for any given robot. The algorithmhas an optimal running time exponent and is based on the notion of roadmaps - one-dimensionalsubsets of the robot's configuration space. In deriving the single exponential bound, Cannyintroduces and reveals the power of two tools that have not been previously used in geometricalgorithms: the generalized (multivariable) resultant for a system of polynomials and Whitney'snotion of stratified sets. He has also developed a novel representation of object orientation basedon unnormalized quaternions which reduces the complexity of the algorithms and enhances theirpractical applicability.After dealing with the movers' problem, the book next attacks and derivesseveral lower bounds on extensions of the problem: finding the shortest path among polyhedralobstacles, planning with velocity limits, and compliant motion planning with uncertainty. Itintroduces a clever technique, "path encoding," that allows a proof of NP-hardness for the first twoproblems and then shows that the general form of compliant motion planning, a problem that is thefocus of a great deal of recent work in robotics, is non-deterministic exponential time hard. Cannyproves this result using a highly original construction.John Canny received his doctorate from MITAnd is an assistant professor in the Computer Science Division at the University of California,Berkeley. The Complexity of Robot Motion Planning is the winner of the 1987 ACM DoctoralDissertation Award.

Robotic Mapping and Exploration

Robotic Mapping and Exploration PDF Author: Cyrill Stachniss
Publisher: Springer
ISBN: 3642010970
Category : Technology & Engineering
Languages : en
Pages : 198

Get Book

Book Description
"Robotic Mapping and Exploration" is an important contribution in the area of simultaneous localization and mapping (SLAM) for autonomous robots, which has been receiving a great deal of attention by the research community in the latest few years. The contents are focused on the autonomous mapping learning problem. Solutions include uncertainty-driven exploration, active loop closing, coordination of multiple robots, learning and incorporating background knowledge, and dealing with dynamic environments. Results are accompanied by a rich set of experiments, revealing a promising outlook toward the application to a wide range of mobile robots and field settings, such as search and rescue, transportation tasks, or automated vacuum cleaning.

Planning Algorithms

Planning Algorithms PDF Author: Steven Michael LaValle
Publisher:
ISBN: 9780511241338
Category : Algorithms
Languages : en
Pages : 826

Get Book

Book Description
Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that integrates literature from several fields into a coherent source for teaching and reference in applications including robotics, computational biology, computer graphics, manufacturing, aerospace applications, and medicine.

Motion Planning

Motion Planning PDF Author: Xj Jing
Publisher: BoD – Books on Demand
ISBN: 953761901X
Category : Technology & Engineering
Languages : en
Pages : 610

Get Book

Book Description
In this book, new results or developments from different research backgrounds and application fields are put together to provide a wide and useful viewpoint on these headed research problems mentioned above, focused on the motion planning problem of mobile ro-bots. These results cover a large range of the problems that are frequently encountered in the motion planning of mobile robots both in theoretical methods and practical applications including obstacle avoidance methods, navigation and localization techniques, environmental modelling or map building methods, and vision signal processing etc. Different methods such as potential fields, reactive behaviours, neural-fuzzy based methods, motion control methods and so on are studied. Through this book and its references, the reader will definitely be able to get a thorough overview on the current research results for this specific topic in robotics. The book is intended for the readers who are interested and active in the field of robotics and especially for those who want to study and develop their own methods in motion/path planning or control for an intelligent robotic system.

Motion Planning in Dynamic Environments

Motion Planning in Dynamic Environments PDF Author: Kikuo Fujimura
Publisher: Springer Science & Business Media
ISBN: 4431681655
Category : Computers
Languages : en
Pages : 190

Get Book

Book Description
Computer Science Workbench is a monograph series which will provide you with an in-depth working knowledge of current developments in computer technology. Every volume in this series will deal with a topic of importance in computer science and elaborate on how you yourself can build systems related to the main theme. You will be able to develop a variety of systems, including computer software tools, computer graphics, computer animation, database management systems, and computer-aided design and manufacturing systems. Computer Science Workbench represents an important new contribution in the field of practical computer technology. TOSIYASU L. KUNII To my parents Kenjiro and Nori Fujimura Preface Motion planning is an area in robotics that has received much attention recently. Much of the past research focuses on static environments - various methods have been developed and their characteristics have been well investigated. Although it is essential for autonomous intelligent robots to be able to navigate within dynamic worlds, the problem of motion planning in dynamic domains is relatively little understood compared with static problems.

Algorithmic Motion Planning in Robotics

Algorithmic Motion Planning in Robotics PDF Author: Micha Sharir
Publisher: Legare Street Press
ISBN: 9781019952993
Category :
Languages : en
Pages : 0

Get Book

Book Description
This book provides an overview of the field of motion planning in robotics. Sharir covers both theoretical and practical approaches to designing algorithms that enable robots to navigate through complex environments. The book includes examples and exercises, making it a valuable resource for students and researchers in the field. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.