Characterization of Petrophysical Properties of Organic-rich Shales by Experiments, Lab Measurements and Machine Learning Analysis

Characterization of Petrophysical Properties of Organic-rich Shales by Experiments, Lab Measurements and Machine Learning Analysis PDF Author: Han Jiang (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description
The increasing significance of shale plays leads to the need for deeper understanding of shale behavior. Laboratory characterization of petrophysical properties is an important part of shale resource evaluation. The characterization, however, remains challenging due to the complicated nature of shale. This work aims at better characterization of shale using experiments, lab measurements, and machine leaning analysis. During hydraulic fracturing, besides tensile failure, the adjacent shale matrix is subjected to massive shear deformation. The interaction of shale pore system and shear deformation, and impacts on production remains unknown. This work investigates the response of shale nanoscale pore system to shear deformation using gas sorption and scanning electron microscope (SEM) imaging. Shale samples are deformed by confined compressive strength tests. After failure, fractures in nanoscale are observed to follow coarser grain boundaries and laminae of OM and matrix materials. Most samples display increases in pore structural parameters. Results suggest that the hydrocarbon mobility may be enhanced by the interaction of the OM laminae and the shear fracturing. Past studied show that the evolution of pore structure of shale is associated with thermal maturation. However, the evolution of shale transport propreties related to thermal maturation is unclear due to the difficulty of conducting permeability measurement for shale. This work studies evolution of permeability and pore structure measurements using heat treatment. Samples are heated from 110°C to 650°C. Gas sorption and GRI (Gas Research Institute) permeability measurements are performed. Results show that those petrophysical parameters, especially permeability, are sensitive to drying temperature. Multiscale pore network features of shale are also revealed in this study. Characterizing fluids in shale using nuclear magnetic resonance (NMR) T1-T2 maps is often done manually, which is difficult and subjected to human decisions. This work proposes a new approach based on Gaussian mixture model (GMM) clustering analysis. Six clustering algorithms are performed on T11-T2 maps. To select the optimal cluster number and best algorithm, two cluster validity indices are proposed. Results validate the two indices, and GMM is found to be the best algorithm. A general fluid partition pattern is obtained by GMM, which is less sensitive to rock lithology. In addition, the clustering performance can be enhanced by drying the sample

Characterization of Petrophysical Properties of Organic-rich Shales by Experiments, Lab Measurements and Machine Learning Analysis

Characterization of Petrophysical Properties of Organic-rich Shales by Experiments, Lab Measurements and Machine Learning Analysis PDF Author: Han Jiang (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description
The increasing significance of shale plays leads to the need for deeper understanding of shale behavior. Laboratory characterization of petrophysical properties is an important part of shale resource evaluation. The characterization, however, remains challenging due to the complicated nature of shale. This work aims at better characterization of shale using experiments, lab measurements, and machine leaning analysis. During hydraulic fracturing, besides tensile failure, the adjacent shale matrix is subjected to massive shear deformation. The interaction of shale pore system and shear deformation, and impacts on production remains unknown. This work investigates the response of shale nanoscale pore system to shear deformation using gas sorption and scanning electron microscope (SEM) imaging. Shale samples are deformed by confined compressive strength tests. After failure, fractures in nanoscale are observed to follow coarser grain boundaries and laminae of OM and matrix materials. Most samples display increases in pore structural parameters. Results suggest that the hydrocarbon mobility may be enhanced by the interaction of the OM laminae and the shear fracturing. Past studied show that the evolution of pore structure of shale is associated with thermal maturation. However, the evolution of shale transport propreties related to thermal maturation is unclear due to the difficulty of conducting permeability measurement for shale. This work studies evolution of permeability and pore structure measurements using heat treatment. Samples are heated from 110°C to 650°C. Gas sorption and GRI (Gas Research Institute) permeability measurements are performed. Results show that those petrophysical parameters, especially permeability, are sensitive to drying temperature. Multiscale pore network features of shale are also revealed in this study. Characterizing fluids in shale using nuclear magnetic resonance (NMR) T1-T2 maps is often done manually, which is difficult and subjected to human decisions. This work proposes a new approach based on Gaussian mixture model (GMM) clustering analysis. Six clustering algorithms are performed on T11-T2 maps. To select the optimal cluster number and best algorithm, two cluster validity indices are proposed. Results validate the two indices, and GMM is found to be the best algorithm. A general fluid partition pattern is obtained by GMM, which is less sensitive to rock lithology. In addition, the clustering performance can be enhanced by drying the sample

Digital rock physics and machine learning

Digital rock physics and machine learning PDF Author: Mingliang Liu
Publisher: Frontiers Media SA
ISBN: 2832522149
Category : Science
Languages : en
Pages : 145

Get Book

Book Description


Pore Scale Study of Gas Sorption and Transport in Shale Nanopore Systems

Pore Scale Study of Gas Sorption and Transport in Shale Nanopore Systems PDF Author: Rui Xu (Ph. D.)
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description
Shale gas production accounts for about 70% of the total natural gas production in the US. Yet it remains a nontrivial task to characterize the petrophysical properties of shale core samples either by experimental analysis or numerical simulations. Shale matrix has low porosity and permeability resulting from nanometer-scale pore sizes. Surface properties of shale can be quite inhomogeneous arising from complex mineralogy and diagenesis. Heterogeneous morphology and topology of the pore structure poses significant challenges on understanding fluid distribution and flow capacity. Pore scale simulations provide insight into the fundamental mechanisms of thermodynamics and hydrodynamics in tight porous materials, and can supplement experimental characterization of shale petrophysical properties (e.g. absolute/relative permeability, capillary pressure curves). However, challenges exist in creating representative pore structures tailored for specific simulation tools, incorporating the appropriate and relevant physics for the problems to be simulated, and interpreting, calibrating, or validating the simulation results. In this work, we used two types of pore scale simulation tools, namely pore network modeling (PNM) and lattice Boltzmann method (LBM), to study gas adsorption/desorption and transport behavior in shale matrix. For the first part of the work, a dual-scale PNM was integrated with lattice density functional theory (LDFT) to study nitrogen adsorption/desorption in mesoporous materials with pore sizes smaller than 200 nm. Critical pore structure parameters (i.e. porosity, pore size distribution, and pore throat connectivity) were characterized by calibrating the simulated nitrogen sorption isotherms to experimental results, and were then used to construct PNMs to study supercritical methane transport. We found that the pore structure characterization results were nonunique and highly dependent on the assumed pore shape. Scanning electron microscope (SEM) images were used to further constrain the description of pore shapes. Advection and diffusion of methane at reservoir conditions were simulated and compared, and suggestions were made regarding the choice of representative pore shape in PNMs for single phase advection/diffusion calculations. We next used LBM to study two-phase thermodynamic and hydrodynamic problems in nanopore systems in shale. Both 2D and 3D LBM models were developed with consideration of mesoscale fluid-fluid and solid-fluid interactions to model gas adsorption in complex geometries, and phase separation occurs automatically without the need to track the interface. This overcomes the pore shape deficiency of PNMs in cases where nanoporous media reconstruction exists. LBM models were then calibrated to LDFT and validated against experimental adsorption data for both subcritical and supercritical gases for the first time. We studied and compared nitrogen sorption hysteresis in two model nanopore system reconstructions representing the interparticle and intraparticle pores in shale. As another example of many possible applications of our developed model, we studied water adsorption and condensation in a reconstructed clay pore structure based on SEM image analysis, and explored the effect of surface wettability on adsorbed/condensed water distribution and connectivity. Supercritical methane flow simulations with the existence of condensed water were conducted using a 3D hydrodynamic LBM model that considers nanoscale flow physics for high Knudsen number flow. The relative permeability of methane as a function of water saturation and surface wettability was calculated and compared to available experimental data measured on geosynthetic clay liners. We demonstrated the wide applicability of our model and suggested future applications

Unconventional Reservoir Geomechanics

Unconventional Reservoir Geomechanics PDF Author: Mark D. Zoback
Publisher: Cambridge University Press
ISBN: 1107087074
Category : Business & Economics
Languages : en
Pages : 495

Get Book

Book Description
A comprehensive overview of the key geologic, geomechanical and engineering principles that govern the development of unconventional oil and gas reservoirs. Covering hydrocarbon-bearing formations, horizontal drilling, reservoir seismology and environmental impacts, this is an invaluable resource for geologists, geophysicists and reservoir engineers.

Development of Unconventional Reservoirs

Development of Unconventional Reservoirs PDF Author: Reza Rezaee
Publisher: MDPI
ISBN: 3039285807
Category : Science
Languages : en
Pages : 522

Get Book

Book Description
The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional reservoirs. As the name “unconventional” implies, different and challenging approaches are required to characterize and develop these resources. This Special Issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane.

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock

Characterization, Modeling, Monitoring, and Remediation of Fractured Rock PDF Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309373727
Category : Science
Languages : en
Pages : 177

Get Book

Book Description
Fractured rock is the host or foundation for innumerable engineered structures related to energy, water, waste, and transportation. Characterizing, modeling, and monitoring fractured rock sites is critical to the functioning of those infrastructure, as well as to optimizing resource recovery and contaminant management. Characterization, Modeling, Monitoring, and Remediation of Fractured Rock examines the state of practice and state of art in the characterization of fractured rock and the chemical and biological processes related to subsurface contaminant fate and transport. This report examines new developments, knowledge, and approaches to engineering at fractured rock sites since the publication of the 1996 National Research Council report Rock Fractures and Fluid Flow: Contemporary Understanding and Fluid Flow. Fundamental understanding of the physical nature of fractured rock has changed little since 1996, but many new characterization tools have been developed, and there is now greater appreciation for the importance of chemical and biological processes that can occur in the fractured rock environment. The findings of Characterization, Modeling, Monitoring, and Remediation of Fractured Rock can be applied to all types of engineered infrastructure, but especially to engineered repositories for buried or stored waste and to fractured rock sites that have been contaminated as a result of past disposal or other practices. The recommendations of this report are intended to help the practitioner, researcher, and decision maker take a more interdisciplinary approach to engineering in the fractured rock environment. This report describes how existing tools-some only recently developed-can be used to increase the accuracy and reliability of engineering design and management given the interacting forces of nature. With an interdisciplinary approach, it is possible to conceptualize and model the fractured rock environment with acceptable levels of uncertainty and reliability, and to design systems that maximize remediation and long-term performance. Better scientific understanding could inform regulations, policies, and implementation guidelines related to infrastructure development and operations. The recommendations for research and applications to enhance practice of this book make it a valuable resource for students and practitioners in this field.

Unconventional Petroleum Geology

Unconventional Petroleum Geology PDF Author: Caineng Zou
Publisher: Elsevier
ISBN: 0128122358
Category : Technology & Engineering
Languages : en
Pages : 508

Get Book

Book Description
Unconventional Petroleum Geology, Second Edition presents the latest research results of global conventional and unconventional petroleum exploration and production. The first part covers the basics of unconventional petroleum geology, its introduction, concept of unconventional petroleum geology, unconventional oil and gas reservoirs, and the origin and distribution of unconventional oil and gas. The second part is focused on unconventional petroleum development technologies, including a series of technologies on resource assessment, lab analysis, geophysical interpretation, and drilling and completion. The third and final section features case studies of unconventional hydrocarbon resources, including tight oil and gas, shale oil and gas, coal bed methane, heavy oil, gas hydrates, and oil and gas in volcanic and metamorphic rocks. Provides an up-to-date, systematic, and comprehensive overview of all unconventional hydrocarbons Reorganizes and updates more than half of the first edition content, including four new chapters Includes a glossary on unconventional petroleum types, including tight-sandstone oil and gas, coal-bed gas, shale gas, oil and gas in fissure-cave-type carbonate rocks, in volcanic reservoirs, and in metamorphic rocks, heavy crude oil and natural bitumen, and gas hydrates Presents new theories, new methods, new technologies, and new management methods, helping to meet the demands of technology development and production requirements in unconventional plays

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs

Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs PDF Author: Jianchao Cai
Publisher: Elsevier
ISBN: 0128172894
Category : Business & Economics
Languages : en
Pages : 354

Get Book

Book Description
Petrophysical Characterization and Fluids Transport in Unconventional Reservoirs presents a comprehensive look at these new methods and technologies for the petrophysical characterization of unconventional reservoirs, including recent theoretical advances and modeling on fluids transport in unconventional reservoirs. The book is a valuable tool for geoscientists and engineers working in academia and industry. Many novel technologies and approaches, including petrophysics, multi-scale modelling, rock reconstruction and upscaling approaches are discussed, along with the challenge of the development of unconventional reservoirs and the mechanism of multi-phase/multi-scale flow and transport in these structures. Includes both practical and theoretical research for the characterization of unconventional reservoirs Covers the basic approaches and mechanisms for enhanced recovery techniques in unconventional reservoirs Presents the latest research in the fluid transport processes in unconventional reservoirs

Petroleum Geoscience

Petroleum Geoscience PDF Author: Knut Bjørlykke
Publisher: Springer
ISBN: 3642341322
Category : Science
Languages : en
Pages : 662

Get Book

Book Description
This comprehensive textbook presents an overview of petroleum geoscience for geologists active in the petroleum industry, while also offering a useful guide for students interested in environmental geology, engineering geology and other aspects of sedimentary geology. In this second edition, new chapters have been added and others expanded, covering geophysical methods in general and electromagnetic exploration methods in particular, as well as reservoir modeling and production, unconventional resources and practical petroleum exploration.

Geological and Geotechnical Engineering in the New Millennium

Geological and Geotechnical Engineering in the New Millennium PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309100097
Category : Science
Languages : en
Pages : 220

Get Book

Book Description
The field of geoengineering is at a crossroads where the path to high-tech solutions meets the path to expanding applications of geotechnology. In this report, the term "geoengineering" includes all types of engineering that deal with Earth materials, such as geotechnical engineering, geological engineering, hydrological engineering, and Earth-related parts of petroleum engineering and mining engineering. The rapid expansion of nanotechnology, biotechnology, and information technology begs the question of how these new approaches might come to play in developing better solutions for geotechnological problems. This report presents a vision for the future of geotechnology aimed at National Science Foundation (NSF) program managers, the geological and geotechnical engineering community as a whole, and other interested parties, including Congress, federal and state agencies, industry, academia, and other stakeholders in geoengineering research. Some of the ideas may be close to reality whereas others may turn out to be elusive, but they all present possibilities to strive for and potential goals for the future. Geoengineers are poised to expand their roles and lead in finding solutions for modern Earth systems problems, such as global change, emissions-free energy supply, global water supply, and urban systems.