Micromechanical Prediction of Tensile Damage for Ceramic Matrix Composites Under High Temperature

Micromechanical Prediction of Tensile Damage for Ceramic Matrix Composites Under High Temperature PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description
This report documents the experimental and theoretical results obtained in studying the tensile damage behavior of ceramic matrix Composites (namely Nicalon/CAS II Composites) at room and elevated temperatures. First the composite Specimens were machined into dog-bone shape and polished to increase efficacy of observation in the SEM. Then the specimens were placed inside the chamber of a Scanning electron microscope (SEM) and subject to tensile loading at room and higher temperatures up to 700 deg c. At each temperature, the load was increased until failure of the specimen and the progression of damage was observed and recorded from first crack to total failure. Damage usually started with matrix cracking, followed by debonding along fiber-matrix interface, fiber pullout and finally fiber breakage. At each load level, the displacement was measured, resulting in a stress-strain curve with linear and non-linear portion. Similar behavior was observed at higher temperatures. Theoretical models to predict and simulate the observed behavior were also developed. A singular integral with periodic matrix cracking and interface debonding explains well the fact that embedded matrix cracks almost always propagate to the interface and are arrested by the fibers. The results obtained from finite element model with multiple rows of matrix cracks and debonding at the fiber-matrix interface, compare extremely well with the experimental data.

Micromechanical Prediction of Tensile Damage for Ceramic Matrix Composites Under High Temperature

Micromechanical Prediction of Tensile Damage for Ceramic Matrix Composites Under High Temperature PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description
This report documents the experimental and theoretical results obtained in studying the tensile damage behavior of ceramic matrix Composites (namely Nicalon/CAS II Composites) at room and elevated temperatures. First the composite Specimens were machined into dog-bone shape and polished to increase efficacy of observation in the SEM. Then the specimens were placed inside the chamber of a Scanning electron microscope (SEM) and subject to tensile loading at room and higher temperatures up to 700 deg c. At each temperature, the load was increased until failure of the specimen and the progression of damage was observed and recorded from first crack to total failure. Damage usually started with matrix cracking, followed by debonding along fiber-matrix interface, fiber pullout and finally fiber breakage. At each load level, the displacement was measured, resulting in a stress-strain curve with linear and non-linear portion. Similar behavior was observed at higher temperatures. Theoretical models to predict and simulate the observed behavior were also developed. A singular integral with periodic matrix cracking and interface debonding explains well the fact that embedded matrix cracks almost always propagate to the interface and are arrested by the fibers. The results obtained from finite element model with multiple rows of matrix cracks and debonding at the fiber-matrix interface, compare extremely well with the experimental data.

Micromechanics of Ceramic-Matrix Composites at Elevated Temperatures

Micromechanics of Ceramic-Matrix Composites at Elevated Temperatures PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9819712947
Category :
Languages : en
Pages : 139

Get Book

Book Description


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 602

Get Book

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.

High Temperature Mechanical Behavior of Ceramic-Matrix Composites

High Temperature Mechanical Behavior of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: John Wiley & Sons
ISBN: 3527831789
Category : Technology & Engineering
Languages : en
Pages : 386

Get Book

Book Description
High Temperature Mechanical Behavior of Ceramic-Matrix Composites Covers the latest research on the high-temperature mechanical behavior of ceramic-matrix composites Due to their high temperature resistance, strength and rigidity, relatively light weight, and corrosion resistance, ceramic-matrix composites (CMCs) are widely used across the aerospace and energy industries. As these advanced composites of ceramics and various fibers become increasingly important in the development of new materials, understanding the high-temperature mechanical behavior and failure mechanisms of CMCs is essential to ensure the reliability and safety of practical applications. High Temperature Mechanical Behavior of Ceramic-Matrix Composites examines the behavior of CMCs at elevated temperature—outlining the latest developments in the field and presenting the results of recent research on different CMC characteristics, material properties, damage states, and temperatures. This up-to-date resource investigates the high-temperature behavior of CMCs in relation to first matrix cracking, matrix multiple cracking, tensile damage and fracture, fatigue hysteresis loops, stress-rupture, vibration damping, and more. This authoritative volume: Details the relationships between various high-temperature conditions and experiment results Features an introduction to the tensile, vibration, fatigue, and stress-rupture behavior of CMCs at elevated temperatures Investigates temperature- and time-dependent cracking stress, deformation, damage, and fracture of fiber-reinforced CMCs Includes full references and internet links to source material Written by a leading international researcher in the field, High Temperature Mechanical Behavior of Ceramic-Matrix Composites is an invaluable resource for materials scientists, surface chemists, organic chemists, aerospace engineers, and other professionals working with CMCs.

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811532745
Category : Technology & Engineering
Languages : en
Pages : 373

Get Book

Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.

Ceramic Matrix Composites

Ceramic Matrix Composites PDF Author: Longbiao Li
Publisher: Elsevier
ISBN: 0323997074
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book

Book Description
Ceramic Matrix Composites: Lifetime and Strength Prediction Under Static and Stochastic Loading focuses on the strain response and lifetime prediction of fiber-reinforced ceramic-matrix composites under stress-rupture loading at intermediate temperatures. Typical damage mechanisms of matrix cracking, interface debonding and oxidation, and fiber’s oxidation and fracture are considered in the micromechanical analysis. Effects of composite’s constituent properties, peak stress, and testing temperature on the composite’s strain response and lifetime are also analyzed in detail. Finally, a comparison of constant and different stochastic stress spectrum on composite’s damage evolution and fracture is discussed. This book will be a practical guide for the material researcher and component designer needing to better understand the composite’s damage and fracture behavior under stress-rupture loading at intermediate temperatures. Contains detailed analysis of the stress-rupture behavior of fiber-reinforced ceramic-matrix composites Includes experimental data on stress-rupture behavior of different CMCs Presents micromechanical constituent models for characterizing damage and fracture behavior under stress-rupture loading Provides data on the physical properties of each constituent at various temperatures, along with the composite’s response

High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites

High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: CRC Press
ISBN: 1000629694
Category : Technology & Engineering
Languages : en
Pages : 200

Get Book

Book Description
This book focuses on mechanical hysteresis behavior in different fiber-reinforced ceramic-matrix composites (CMCs), including 1D minicomposites, 1D unidirectional, 2D cross-ply, 2D plain-woven, 2.5D woven, and 3D needle-punched composites. Ceramic-matrix composites (CMCs) are considered to be the lightweight high-temperature materials for hot-section components in aeroengines with the most potential. To improve the reliability and safety of CMC components during operation, it is necessary to conduct damage and failure mechanism analysis, and to develop models to predict this damage as well as fracture over lifetime - mechanical hysteresis is a key damage behavior in fiber-reinforced CMCs. The appearance of hysteresis is due to a composite’s internal damage mechanisms and modes, such as, matrix cracking, interface debonding, and fiber failure. Micromechanical damage models and constitutive models are developed to predict mechanical hysteresis in different CMCs. Effects of a composite’s constituent properties, stress level, and the damage states of the mechanical hysteresis behavior of CMCs are also discussed. This book also covers damage mechanisms, damage models and micromechanical constitutive models for the mechanical hysteresis of CMCs. This book will be a great resource for students, scholars, material scientists and engineering designers who would like to understand and master the mechanical hysteresis behavior of fiber-reinforced CMCs.

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading PDF Author: Longbiao Li
Publisher:
ISBN: 9789811621420
Category :
Languages : en
Pages : 0

Get Book

Book Description
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCs subjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.

Damage, Fracture, and Fatigue of Ceramic-Matrix Composites

Damage, Fracture, and Fatigue of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Springer
ISBN: 9811317836
Category : Technology & Engineering
Languages : en
Pages : 244

Get Book

Book Description
This book focuses on the damage, fracture and fatigue of ceramic-matrix composites. It investigates tensile damage and fracture, fatigue hysteresis, and the properties of interfaces subjected to cyclic fatigue loading. Further, it predicts fatigue life at room and elevated temperatures using newly developed damage models and methods, and it analyzes and compares damage, fracture and fatigue behavior of different fiber performs: unidirectional, cross-ply, 2D and 2.5D woven. The developed models and methods can be used to predict the damage and lifetime of ceramic-matrix composites during applications on hot section components.Ceramic-matrix composites (CMCs) are high-temperature structural materials with the significant advantages of high specific strength, high specific modulus, high temperature resistance and good thermal stability, which play a crucial role in the development of high thrust weight ratio aero engines. The critical nature of the application of these advanced materials makes comprehensive characterization a necessity, and as such this book provides designers with essential information pertaining not only to the strength of the materials, but also to their fatigue and damage characteristics.

High Temperature Ceramic Matrix Composites

High Temperature Ceramic Matrix Composites PDF Author: Walter Krenkel
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 1044

Get Book

Book Description
The extreme high temperature stability and damage tolerance of materials and components required for space, terrestrial, energetic and many other applications can only be achieved by ceramic materials. All over the world research is going on to develop ceramics with quasiductile behaviour. The materials with the highest potential for high temperature applications are fibre reinforced ceramic matrix composites (CMC). The international conference HT-CMC 4 in Munich will continue the tradition of its successful predecessor meetings held in Bordeaux (France, 1993), Santa Barbara (USA, 1995) and Osaka (Japan, 1998). This conference series has been recognized as the central meeting event in high temperature CMC science and technology and demonstrates the great interest in research and development on reinforced ceramics. The Proceedings of this conference will therefore be a valuable reference for every materials scientist or engineer involved in this field of high-tech materials development.