Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics PDF Author: Stephen Gedney
Publisher: Springer Nature
ISBN: 3031017129
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book

Book Description
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics PDF Author: Stephen Gedney
Publisher: Springer Nature
ISBN: 3031017129
Category : Technology & Engineering
Languages : en
Pages : 242

Get Book

Book Description
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

The Finite Difference Time Domain Method for Electromagnetics

The Finite Difference Time Domain Method for Electromagnetics PDF Author: Karl S. Kunz
Publisher: Routledge
ISBN: 1351410474
Category : Science
Languages : en
Pages : 340

Get Book

Book Description
The Finite-Difference Time-domain (FDTD) method allows you to compute electromagnetic interaction for complex problem geometries with ease. The simplicity of the approach coupled with its far-reaching usefulness, create the powerful, popular method presented in The Finite Difference Time Domain Method for Electromagnetics. This volume offers timeless applications and formulations you can use to treat virtually any material type and geometry. The Finite Difference Time Domain Method for Electromagnetics explores the mathematical foundations of FDTD, including stability, outer radiation boundary conditions, and different coordinate systems. It covers derivations of FDTD for use with PEC, metal, lossy dielectrics, gyrotropic materials, and anisotropic materials. A number of applications are completely worked out with numerous figures to illustrate the results. It also includes a printed FORTRAN 77 version of the code that implements the technique in three dimensions for lossy dielectric materials. There are many methods for analyzing electromagnetic interactions for problem geometries. With The Finite Difference Time Domain Method for Electromagnetics, you will learn the simplest, most useful of these methods, from the basics through to the practical applications.

Electromagnetic Simulation Using the FDTD Method

Electromagnetic Simulation Using the FDTD Method PDF Author: Dennis M. Sullivan
Publisher: John Wiley & Sons
ISBN: 1118646630
Category : Science
Languages : en
Pages : 169

Get Book

Book Description
A straightforward, easy-to-read introduction to the finite-difference time-domain (FDTD) method Finite-difference time-domain (FDTD) is one of the primary computational electrodynamics modeling techniques available. Since it is a time-domain method, FDTD solutions can cover a wide frequency range with a single simulation run and treat nonlinear material properties in a natural way. Written in a tutorial fashion, starting with the simplest programs and guiding the reader up from one-dimensional to the more complex, three-dimensional programs, this book provides a simple, yet comprehensive introduction to the most widely used method for electromagnetic simulation. This fully updated edition presents many new applications, including the FDTD method being used in the design and analysis of highly resonant radio frequency (RF) coils often used for MRI. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Projects that increase in complexity are included, ranging from simulations in free space to propagation in dispersive media. Additionally, the text offers downloadable MATLAB and C programming languages from the book support site (http://booksupport.wiley.com). Simple to read and classroom-tested, Electromagnetic Simulation Using the FDTD Method is a useful reference for practicing engineers as well as undergraduate and graduate engineering students.

Numerical Electromagnetics

Numerical Electromagnetics PDF Author: Umran S. Inan
Publisher: Cambridge University Press
ISBN: 1139497987
Category : Science
Languages : en
Pages : 405

Get Book

Book Description
Beginning with the development of finite difference equations, and leading to the complete FDTD algorithm, this is a coherent introduction to the FDTD method (the method of choice for modeling Maxwell's equations). It provides students and professional engineers with everything they need to know to begin writing FDTD simulations from scratch and to develop a thorough understanding of the inner workings of commercial FDTD software. Stability, numerical dispersion, sources and boundary conditions are all discussed in detail, as are dispersive and anisotropic materials. A comparative introduction of the finite volume and finite element methods is also provided. All concepts are introduced from first principles, so no prior modeling experience is required, and they are made easier to understand through numerous illustrative examples and the inclusion of both intuitive explanations and mathematical derivations.

Introduction to Time Domain Numerical Methods for Solving Electromagnetic Problems

Introduction to Time Domain Numerical Methods for Solving Electromagnetic Problems PDF Author: Shunchuan Yang
Publisher: CRC Press
ISBN: 9781498746922
Category :
Languages : en
Pages : 600

Get Book

Book Description
This book introduces the time domain numerical methods to solve electromagnetic problems, including finite-difference time-domain (FDTD) method, the finite element method (FEM) and method of moment (MOM). It also presents emerging methods in the recent ten years for electromagnetics simulations. All these methods can be unified under a single mathematic framework. This is one of the few books to unify and compare different time-domain methods and clarify their respective advantages and disadvantages.

Parallel Finite-difference Time-domain Method

Parallel Finite-difference Time-domain Method PDF Author: Wenhua Yu
Publisher: Artech House Publishers
ISBN:
Category : Computers
Languages : en
Pages : 284

Get Book

Book Description
The finite-difference time-domain (FTDT) method has revolutionized antenna design and electromagnetics engineering. This book raises the FDTD method to the next level by empowering it with the vast capabilities of parallel computing. It shows engineers how to exploit the natural parallel properties of FDTD to improve the existing FDTD method and to efficiently solve more complex and large problem sets. Professionals learn how to apply open source software to develop parallel software and hardware to run FDTD in parallel for their projects. The book features hands-on examples that illustrate th.

Advances in Computational Electrodynamics

Advances in Computational Electrodynamics PDF Author: Allen Taflove
Publisher: Artech House Publishers
ISBN:
Category : Diferencias finitas
Languages : en
Pages : 766

Get Book

Book Description
Finite-Difference Time-Domain (FD-TD) modeling is arguably the most popular and powerful means available to perform detailed electromagnetic engineering analyses. Edited by the pioneer and foremost authority on the subject, here is the first book to assemble in one resource the latest techniques and results of the leading theoreticians and practitioners of FD-TD computational electromagnetics modeling.

Electromagnetic Simulation Techniques Based on the FDTD Method

Electromagnetic Simulation Techniques Based on the FDTD Method PDF Author: W. Yu
Publisher: John Wiley & Sons
ISBN: 0470502037
Category : Technology & Engineering
Languages : en
Pages : 221

Get Book

Book Description
Bridges the gap between FDTD theory and the implementation of practical simulation techniques This is the first publication that guides readers step by step through the implementation of electromagnetic simulation techniques based on FDTD methods. These simulation techniques serve as an essential bridge between FDTD methods and their applications. Moreover, the book helps readers better understand the underlying logic of FDTD methods so that they can design FDTD projects using either commercial electromagnetic software packages or their own codes in order to solve practical engineering problems. The book begins with two chapters that introduce the basic concepts of the 3-D Cartesian FDTD method, followed by discussions of advanced FDTD methods such as conformal techniques, dispersive media, circuit elements, and near-to-far field transformation. Next, the book: Presents basic concepts of parallel processing techniques and systems, including parallel FDTD techniques and systems Explores simulation techniques based on FDTD methods Illustrates practical simulation techniques using engineering applications Introduces advanced simulation techniques Each chapter concludes with references to help readers investigate particular topics in greater depth. Each chapter also includes problem sets that challenge readers to put their new FDTD and simulation skills into practice. By bridging the gap between FDTD theory and practical simulation techniques, this publication is an invaluable guide for students and engineers who need to solve a wide range of design problems in RF, antenna, and microwave engineering.

Efficient Solution of Maxwell's Equations Using the Nonuniform Orthogonal Finite Difference Time Domain Method

Efficient Solution of Maxwell's Equations Using the Nonuniform Orthogonal Finite Difference Time Domain Method PDF Author: John Allan Svigelj
Publisher:
ISBN:
Category :
Languages : en
Pages : 306

Get Book

Book Description
The Finite Difference Time Domain (FDTD) method is limited by memory requirements and computation time when applied to large problems, complicated geometries, or geometries with fine features. In this thesis, the nonuniform orthogonal FDTD method is presented and applied to a variety of electromagnetic problems. The nonuniform aspect of the method gives great flexibility in modeling complicated geometries with fine features. Furthermore, the variability of the mesh resolution also enables the user to move the boundaries of the computational domain farther away from the center of the problem without an undue increase in the number of cells. Most significantly, the orthogonality of the method preserves the speed of the conventional FDTD method. These three features of the nonuniform orthogonal FDTD method are demonstrated by means of numerical examples throughout the thesis. Grid dispersion error from the nonuniform mesh is analyzed and numerical examples are presented, demonstrating that small growth rates in mesh discretization lead to acceptably small errors. The issue of absorbing boundary conditions is addressed with the analysis and application of the dispersive boundary condition on nonuniform meshes. New techniques are also introduced for the efficient characterization of microstrip lines, microstrip discontinuities, and coupled microstrip structures using FDTD data. A local mesh refinement technique is introduced for planar perfect electric conductor, and is shown to be three times more accurate than the staircasing approximation. The versatility of the method is demonstrated by the analysis of a balun-fed folded dipole antenna, the characterization of the transition of grounded coplanar waveguide to microstrip line, and the study of fields in lossy layered media.

Electromagnetic Simulation Using the FDTD Method with Python

Electromagnetic Simulation Using the FDTD Method with Python PDF Author: Jennifer E. Houle
Publisher: John Wiley & Sons
ISBN: 1119565804
Category : Science
Languages : en
Pages : 224

Get Book

Book Description
Provides an introduction to the Finite Difference Time Domain method and shows how Python code can be used to implement various simulations This book allows engineering students and practicing engineers to learn the finite-difference time-domain (FDTD) method and properly apply it toward their electromagnetic simulation projects. Each chapter contains a concise explanation of an essential concept and instruction on its implementation into computer code. Included projects increase in complexity, ranging from simulations in free space to propagation in dispersive media. This third edition utilizes the Python programming language, which is becoming the preferred computer language for the engineering and scientific community. Electromagnetic Simulation Using the FDTD Method with Python, Third Edition is written with the goal of enabling readers to learn the FDTD method in a manageable amount of time. Some basic applications of signal processing theory are explained to enhance the effectiveness of FDTD simulation. Topics covered in include one-dimensional simulation with the FDTD method, two-dimensional simulation, and three-dimensional simulation. The book also covers advanced Python features and deep regional hyperthermia treatment planning. Electromagnetic Simulation Using the FDTD Method with Python: Guides the reader from basic programs to complex, three-dimensional programs in a tutorial fashion Includes a rewritten fifth chapter that illustrates the most interesting applications in FDTD and the advanced graphics techniques of Python Covers peripheral topics pertinent to time-domain simulation, such as Z-transforms and the discrete Fourier transform Provides Python simulation programs on an accompanying website An ideal book for senior undergraduate engineering students studying FDTD, Electromagnetic Simulation Using the FDTD Method with Python will also benefit scientists and engineers interested in the subject.