Identification and System Parameter Estimation

Identification and System Parameter Estimation PDF Author:
Publisher:
ISBN:
Category : Estimation theory
Languages : en
Pages : 680

Get Book

Book Description


Identification and System Parameter Estimation

Identification and System Parameter Estimation PDF Author: Pieter Eykhoff
Publisher:
ISBN:
Category : Automatic control
Languages : en
Pages : 672

Get Book

Book Description


System Parameter Identification

System Parameter Identification PDF Author: Badong Chen
Publisher: Newnes
ISBN: 0124045952
Category : Computers
Languages : en
Pages : 266

Get Book

Book Description
Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and application of system parameter identification. The authors’ research provides a base for the book, but it incorporates the results from the latest international research publications. Named a 2013 Notable Computer Book for Information Systems by Computing Reviews One of the first books to present system parameter identification with information theoretic criteria so readers can track the latest developments Contains numerous illustrative examples to help the reader grasp basic methods

Identification of Continuous-Time Systems

Identification of Continuous-Time Systems PDF Author: Allamaraju Subrahmanyam
Publisher: CRC Press
ISBN: 1000732622
Category : Technology & Engineering
Languages : en
Pages : 120

Get Book

Book Description
Models of dynamical systems are required for various purposes in the field of systems and control. The models are handled either in discrete time (DT) or in continuous time (CT). Physical systems give rise to models only in CT because they are based on physical laws which are invariably in CT. In system identification, indirect methods provide DT models which are then converted into CT. Methods of directly identifying CT models are preferred to the indirect methods for various reasons. The direct methods involve a primary stage of signal processing, followed by a secondary stage of parameter estimation. In the primary stage, the measured signals are processed by a general linear dynamic operation—computational or realized through prefilters, to preserve the system parameters in their native CT form—and the literature is rich on this aspect. In this book: Identification of Continuous-Time Systems-Linear and Robust Parameter Estimation, Allamaraju Subrahmanyam and Ganti Prasada Rao consider CT system models that are linear in their unknown parameters and propose robust methods of estimation. This book complements the existing literature on the identification of CT systems by enhancing the secondary stage through linear and robust estimation. In this book, the authors provide an overview of CT system identification, consider Markov-parameter models and time-moment models as simple linear-in-parameters models for CT system identification, bring them into mainstream model parameterization via basis functions, present a methodology to robustify the recursive least squares algorithm for parameter estimation of linear regression models, suggest a simple off-line error quantification scheme to show that it is possible to quantify error even in the absence of informative priors, and indicate some directions for further research. This modest volume is intended to be a useful addition to the literature on identifying CT systems.

System Identification

System Identification PDF Author: R. Isermann
Publisher: Elsevier
ISBN: 148313945X
Category : Technology & Engineering
Languages : en
Pages : 91

Get Book

Book Description
System Identification is a special section of the International Federation of Automatic Control (IFAC)-Journal Automatica that contains tutorial papers regarding the basic methods and procedures utilized for system identification. Topics include modeling and identification; step response and frequency response methods; correlation methods; least squares parameter estimation; and maximum likelihood and prediction error methods. After analyzing the basic ideas concerning the parameter estimation methods, the book elaborates on the asymptotic properties of these methods, and then investigates the application of the methods to particular model structures. The text then discusses the practical aspects of process identification, which includes the usual, general procedures for process identification; selection of input signals and sampling time; offline and on-line identification; comparison of parameter estimation methods; data filtering; model order testing; and model verification. Computer program packages are also discussed. This compilation of tutorial papers aims to introduce the newcomers and non-specialists in this field to some of the basic methods and procedures used for system identification.

System Identification Parameter and State Estimation

System Identification Parameter and State Estimation PDF Author: P. Eykhoff
Publisher: Chichester ; New York : Wiley
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 584

Get Book

Book Description


Identification and System Parameter Estimation

Identification and System Parameter Estimation PDF Author: Rolf Isermann
Publisher:
ISBN:
Category : Estimation theory
Languages : en
Pages : 1347

Get Book

Book Description


Identification and System Parameter Estimation 1982

Identification and System Parameter Estimation 1982 PDF Author: G. A. Bekey
Publisher: Elsevier
ISBN: 1483165787
Category : Technology & Engineering
Languages : en
Pages : 868

Get Book

Book Description
Identification and System Parameter Estimation 1982 covers the proceedings of the Sixth International Federation of Automatic Control (IFAC) Symposium. The book also serves as a tribute to Dr. Naum S. Rajbman. The text covers issues concerning identification and estimation, such as increasing interrelationships between identification/estimation and other aspects of system theory, including control theory, signal processing, experimental design, numerical mathematics, pattern recognition, and information theory. The book also provides coverage regarding the application and problems faced by several engineering and scientific fields that use identification and estimation, such as biological systems, traffic control, geophysics, aeronautics, robotics, economics, and power systems. Researchers from all scientific fields will find this book a great reference material, since it presents topics that concern various disciplines.

System Identification

System Identification PDF Author: Lennart Ljung
Publisher: Pearson Education
ISBN: 0132440539
Category : Technology & Engineering
Languages : en
Pages : 873

Get Book

Book Description
The field's leading text, now completely updated. Modeling dynamical systems — theory, methodology, and applications. Lennart Ljung's System Identification: Theory for the User is a complete, coherent description of the theory, methodology, and practice of System Identification. This completely revised Second Edition introduces subspace methods, methods that utilize frequency domain data, and general non-linear black box methods, including neural networks and neuro-fuzzy modeling. The book contains many new computer-based examples designed for Ljung's market-leading software, System Identification Toolbox for MATLAB. Ljung combines careful mathematics, a practical understanding of real-world applications, and extensive exercises. He introduces both black-box and tailor-made models of linear as well as non-linear systems, and he describes principles, properties, and algorithms for a variety of identification techniques: Nonparametric time-domain and frequency-domain methods. Parameter estimation methods in a general prediction error setting. Frequency domain data and frequency domain interpretations. Asymptotic analysis of parameter estimates. Linear regressions, iterative search methods, and other ways to compute estimates. Recursive (adaptive) estimation techniques. Ljung also presents detailed coverage of the key issues that can make or break system identification projects, such as defining objectives, designing experiments, controlling the bias distribution of transfer-function estimates, and carefully validating the resulting models. The first edition of System Identification has been the field's most widely cited reference for over a decade. This new edition will be the new text of choice for anyone concerned with system identification theory and practice.

Nonlinear System Identification — Input-Output Modeling Approach

Nonlinear System Identification — Input-Output Modeling Approach PDF Author: Robert Haber
Publisher: Springer
ISBN: 9780792358589
Category : Science
Languages : en
Pages : 802

Get Book

Book Description
The subject of the book is to present the modeling, parameter estimation and other aspects of the identification of nonlinear dynamic systems. The treatment is restricted to the input-output modeling approach. Because of the widespread usage of digital computers discrete time methods are preferred. Time domain parameter estimation methods are dealt with in detail, frequency domain and power spectrum procedures are described shortly. The theory is presented from the engineering point of view, and a large number of examples of case studies on the modeling and identifications of real processes illustrate the methods. Almost all processes are nonlinear if they are considered not merely in a small vicinity of the working point. To exploit industrial equipment as much as possible, mathematical models are needed which describe the global nonlinear behavior of the process. If the process is unknown, or if the describing equations are too complex, the structure and the parameters can be determined experimentally, which is the task of identification. The book is divided into seven chapters dealing with the following topics: 1. Nonlinear dynamic process models 2. Test signals for identification 3. Parameter estimation methods 4. Nonlinearity test methods 5. Structure identification 6. Model validity tests 7. Case studies on identification of real processes Chapter I summarizes the different model descriptions of nonlinear dynamical systems.