Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells

Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells PDF Author: Francesco Tornabene
Publisher: Esculapio
ISBN: 9788893854061
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book

Book Description
Higher-Order Strong and Weak Formulations for Arbitrarily Shaped Shell Structures

Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells

Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells PDF Author: Francesco Tornabene
Publisher: Esculapio
ISBN: 9788893854061
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book

Book Description
Higher-Order Strong and Weak Formulations for Arbitrarily Shaped Shell Structures

Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells

Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells PDF Author: Francesco Tornabene
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 1073

Get Book

Book Description
This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for studying the Hygro-Thermo-Magneto-Electro- Elastic Theory of Anisotropic Doubly-Curved Shells. In particular, a general coupled multifield theory regarding anisotropic shell structures is provided. The three-dimensional multifield problem is reduced in a two-dimensional one following the principles of the Equivalent Single Layer (ESL) approach and the Equivalent Layer-Wise (ELW) approach, setting a proper configuration model. According to the adopted configuration assumptions, several Higher-order Shear Deformation Theories (HSDTs) are obtained. Furthermore, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the physical behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are used to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are considered, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. The Theory of Composite Thin Shells is derived in a simple and intuitive manner from the theory of thick and moderately thick shells (First-order Shear Deformation Theory or Reissner- Mindlin Theory). In particular, the Kirchhoff-Love Theory and the Membrane Theory for composite shells are shown. Furthermore, the Theory of Composite Arches and Beams is also exposed. In particular, the equations of the Timoshenko Theory and the Euler-Bernoulli Theory are directly deducted from the equations of singly-curved shells of translation and of plates.

Proceedings of the International Conference of Steel and Composite for Engineering Structures

Proceedings of the International Conference of Steel and Composite for Engineering Structures PDF Author: Brahim Benaissa
Publisher: Springer Nature
ISBN: 3031572246
Category :
Languages : en
Pages : 309

Get Book

Book Description


Generalized Differential and Integral Quadrature

Generalized Differential and Integral Quadrature PDF Author: Francesco Tornabene
Publisher: Società Editrice Esculapio
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 689

Get Book

Book Description
The main aim of this book is to analyze the mathematical fundamentals and the main features of the Generalized Differential Quadrature (GDQ) and Generalized Integral Quadrature (GIQ) techniques. Furthermore, another interesting aim of the present book is to shown that from the two numerical techniques mentioned above it is possible to derive two different approaches such as the Strong and Weak Finite Element Methods (SFEM and WFEM), that will be used to solve various structural problems and arbitrarily shaped structures. A general approach to the Differential Quadrature is proposed. The weighting coefficients for different basis functions and grid distributions are determined. Furthermore, the expressions of the principal approximating polynomials and grid distributions, available in the literature, are shown. Besides the classic orthogonal polynomials, a new class of basis functions, which depend on the radial distance between the discretization points, is presented. They are known as Radial Basis Functions (or RBFs). The general expressions for the derivative evaluation can be utilized in the local form to reduce the computational cost. From this concept the Local Generalized Differential Quadrature (LGDQ) method is derived. The Generalized Integral Quadrature (GIQ) technique can be used employing several basis functions, without any restriction on the point distributions for the given definition domain. To better underline these concepts some classical numerical integration schemes are reported, such as the trapezoidal rule or the Simpson method. An alternative approach based on Taylor series is also illustrated to approximate integrals. This technique is named as Generalized Taylor-based Integral Quadrature (GTIQ) method. The major structural theories for the analysis of the mechanical behavior of various structures are presented in depth in the book. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. Generally speaking, two formulations of the same system of governing equations can be developed, which are respectively the strong and weak (or variational) formulations. Once the governing equations that rule a generic structural problem are obtained, together with the corresponding boundary conditions, a differential system is written. In particular, the Strong Formulation (SF) of the governing equations is obtained. The differentiability requirement, instead, is reduced through a weighted integral statement if the corresponding Weak Formulation (WF) of the governing equations is developed. Thus, an equivalent integral formulation is derived, starting directly from the previous one. In particular, the formulation in hand is obtained by introducing a Lagrangian approximation of the degrees of freedom of the problem. The need of studying arbitrarily shaped domains or characterized by mechanical and geometrical discontinuities leads to the development of new numerical approaches that divide the structure in finite elements. Then, the strong form or the weak form of the fundamental equations are solved inside each element. The fundamental aspects of this technique, which the author defined respectively Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are presented in the book.

Vibration of Shells

Vibration of Shells PDF Author: Arthur W. Leissa
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 438

Get Book

Book Description
The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

Applied Mechanics Reviews

Applied Mechanics Reviews PDF Author:
Publisher:
ISBN:
Category : Mechanics, Applied
Languages : en
Pages : 384

Get Book

Book Description


International Aerospace Abstracts

International Aerospace Abstracts PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 974

Get Book

Book Description


Vibrations of Shells and Plates

Vibrations of Shells and Plates PDF Author: Werner Soedel
Publisher: CRC Press
ISBN: 0203026306
Category : Mathematics
Languages : en
Pages : 592

Get Book

Book Description
With increasingly sophisticated structures involved in modern engineering, knowledge of the complex vibration behavior of plates, shells, curved membranes, rings, and other complex structures is essential for today‘s engineering students, since the behavior is fundamentally different than that of simple structures such as rods and beams. Now in its

Physics of Surfaces and Interfaces

Physics of Surfaces and Interfaces PDF Author: Harald Ibach
Publisher: Springer Science & Business Media
ISBN: 3540347100
Category : Science
Languages : en
Pages : 646

Get Book

Book Description
This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.

Smoothed Point Interpolation Methods

Smoothed Point Interpolation Methods PDF Author: Gui-Rong Liu
Publisher: World Scientific
ISBN: 9814452858
Category : Mathematics
Languages : en
Pages : 697

Get Book

Book Description
This book describes the various Smoothed Point Interpolation Method (S-PIM) models in a systematic, concise and easy-to-understand manner. The underlying principles for the next generation of computational methods, G space theory, novel weakened weak (W2) formulations, techniques for shape functions, formulation procedures, and implementation strategies are presented in detail.