GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 1 (Theory and Computational Model (Revision 1.0)

GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 1 (Theory and Computational Model (Revision 1.0) PDF Author: Xiao, Jianjun
Publisher: KIT Scientific Publishing
ISBN: 3731504480
Category : Computational fluid dynamics
Languages : en
Pages : 124

Get Book

Book Description
Karlsruhe Institute of Technology (KIT) is developing the parallel computational fluid dynamics code GASFLOW-MPI as a best-estimate tool for predicting transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facility buildings. GASFLOW-MPI is a finite-volume code based on proven computational fluid dynamics methodology that solves the compressible Navier-Stokes equations for three-dimensional volumes in Cartesian or cylindrical coordinates.

GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 1 (Theory and Computational Model (Revision 1.0)

GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 1 (Theory and Computational Model (Revision 1.0) PDF Author: Xiao, Jianjun
Publisher: KIT Scientific Publishing
ISBN: 3731504480
Category : Computational fluid dynamics
Languages : en
Pages : 124

Get Book

Book Description
Karlsruhe Institute of Technology (KIT) is developing the parallel computational fluid dynamics code GASFLOW-MPI as a best-estimate tool for predicting transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facility buildings. GASFLOW-MPI is a finite-volume code based on proven computational fluid dynamics methodology that solves the compressible Navier-Stokes equations for three-dimensional volumes in Cartesian or cylindrical coordinates.

GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 1 (Theory and Computational Model (Revision 1.0) und Band 2 (Users' Manual). (KIT Scientific Reports ; 7710 und 7711)

GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 1 (Theory and Computational Model (Revision 1.0) und Band 2 (Users' Manual). (KIT Scientific Reports ; 7710 und 7711) PDF Author: Jianjun Xiao
Publisher:
ISBN: 9783731504474
Category :
Languages : en
Pages :

Get Book

Book Description


GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 2 (Users' Manual (Revision 1.0).

GASFLOW-MPI: A Scalable Computational Fluid Dynamics Code for Gases, Aerosols and Combustion. Band 2 (Users' Manual (Revision 1.0). PDF Author: Xiao, Jianjun
Publisher: KIT Scientific Publishing
ISBN: 3731504499
Category :
Languages : en
Pages : 274

Get Book

Book Description


Annual Report 2016 of the Institute for Nuclear and Energy Technologies (KIT Scientific Reports ; 7742)

Annual Report 2016 of the Institute for Nuclear and Energy Technologies (KIT Scientific Reports ; 7742) PDF Author: Schulenberg, Thomas
Publisher: KIT Scientific Publishing
ISBN: 3731507064
Category :
Languages : en
Pages : 90

Get Book

Book Description


Computational Fluid Dynamics and Reacting Gas Flows

Computational Fluid Dynamics and Reacting Gas Flows PDF Author: Bj鑟rn·Engquist
Publisher:
ISBN: 9787506212359
Category : Combustion
Languages : en
Pages : 346

Get Book

Book Description


Multiphase Flow Dynamics 3

Multiphase Flow Dynamics 3 PDF Author: Nikolay Ivanov Kolev
Publisher: Springer Science & Business Media
ISBN: 354071443X
Category : Technology & Engineering
Languages : en
Pages : 308

Get Book

Book Description
In order to allow the application of the theory from all the three volumes also to processes in combustion engines a systematic set of internally consistent state equations for diesel fuel gas and liquid valid in broad range of changing pressure and temperature are provided also in Volume 3. Erlangen, October 2006 Nikolay Ivanov Kolev Table of contents 1 Some basics of the single-phase boundary layer theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1 Flow over plates, velocity profiles, share forces, heat transfer. . . . . . . . . . . . . . . . . . . . 1 1. 1. 1 Laminar flow over the one site of a plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1. 1. 2 Turbulent flow parallel to plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1. 2 Steady state flow in pipes with circular cross sections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1. 2. 1 Hydraulic smooth wall surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1. 2. 2 Transition region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2. 3 Complete rough region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1. 2. 4 Heat transfer to fluid in a pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1. 3 Transient flow in pipes with circular cross sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 Introduction to turbulence of multi-phase flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2. 1 Basic ideas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2. 2 Isotropy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2. 3 Scales, eddy viscosity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2. 3. 1 Small scale turbulent motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2. 3. 2 Large scale turbulent motion, Kolmogorov-Pandtl expression. . . . . . . . . 42 2. 4 k-eps framework. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3 Sources for fine resolution outside the boundary layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3. 1 Bulk sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3. 1. 1 Deformation of the velocity field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3. 1. 2 Blowing and suction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice

Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice PDF Author: Pannala, Sreekanth
Publisher: IGI Global
ISBN: 1615206523
Category : Computers
Languages : en
Pages : 500

Get Book

Book Description
"This book provides various approaches to computational gas-solids flow and will aid the researchers, graduate students and practicing engineers in this rapidly expanding area"--Provided by publisher.

Computational Fluid Dynamics and Reacting Gas Flows

Computational Fluid Dynamics and Reacting Gas Flows PDF Author: B. Engquist
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book

Book Description


Experimentation Modeling and Computation in Flow, Turbulence and Combustion

Experimentation Modeling and Computation in Flow, Turbulence and Combustion PDF Author: Jean-Antoine Désidéri
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 320

Get Book

Book Description
Volume 2 of this significant work presents previously unpublished cutting-edge lectures from the Third French-Russian Workshop on Fluid Dynamics held in Tashkent in April 1995. Reflecting the Workshop?s main themes, this book particularly focuses on: expermental investigation of unsteady separated flow, 3D configurations, laminar and transitional flows, turbulent shock, shock interaction in hypersonic flow, pressure pulsation in separated flows and jets and high enthalpy flows using wind tunnels. modeling of free surface flows, natural gas combustion, vortical gas flows and acoustic processes in complex channels, non-equilibrium hypersonic viscous flows, wall law for fluids and compressible fluid jets with vortex zones. theoretical predictions of aerodynamic performances with analyses of supersonic combustion, detonation, and sumulation of reactive mixing layer. solution methods for quasilinear parabolic equations and other calculations including incompressible Navier Stokes equations and parabolic equations by Monte-Carlo methods. numerical algorithms for the simulation of atmospheric gas dynamics, kinetic schemes for viscous gas dynamic flows and evolutionary algorithms for complex optimization problems. This book will be of particular interest to all engineers and research scientists in Fluid Dynamics, Aeronautics, Aerospace and Mechanical or Applied Mathematics.

Cfd Simulation of Multicomponent Gas Flow Through Porous Media

Cfd Simulation of Multicomponent Gas Flow Through Porous Media PDF Author: Chethan Mohan Kumar
Publisher:
ISBN: 9783656396352
Category :
Languages : en
Pages : 82

Get Book

Book Description
Master's Thesis from the year 2013 in the subject Engineering - Computer Engineering, grade: none, University of Wuppertal, course: Computational Mechanics of Engineering - Computational Fluid Dynamics, language: English, abstract: The objective of this thesis is to develop a generic CFD solver to simulate multicomponent gas transport involving multiscales. A comparative study between the mixture and Eulerian approach for multicomponent flows is done. Eulerian approach where every component has its own characteristic velocity is used in this work with reasons stated. Inter-component momentum exchange term has been modelled using Maxwell-Stefan relations. A semi-heuristic drag term for modelling porous drag is used. Temperature transport for the mixture is developed by considering an ensemble averaging method of all components for the mixture. Volume averaged form for all the equations is applied by considering fluid in presence of porous media as a pseudo-homogeneous medium. All the equations and terms mentioned are implemented in the solver. An open source CFD software OpenFOAM has been used to develop the solver. Capability of the solver to simulate diffusion dominated mass transfer has been established by using a Loschmidt tube which involves diffusion of a ternary mixture. Accuracy of 0.5% is observed for the case in comparison with analytical solution for the problem in one dimension. Validation of porous drag and energy transport has been done by using a fully developed laminar flow over two parallel plates and comparing the Nusselt numbers. The Nusselt numbers of 8.85 and 9.13 for porous and non-porous zones were observed compared to the literature values of 7.54 and 9.8. The reason for the deviations are stated.