Blade Design and Analysis for Steam Turbines

Blade Design and Analysis for Steam Turbines PDF Author: Murari P. Singh
Publisher: McGraw Hill Professional
ISBN: 0071635734
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book

Book Description
THE LATEST STEAM TURBINE BLADE DESIGN AND ANALYTICAL TECHNIQUES Blade Design and Analysis for Steam Turbines provides a concise reference for practicing engineers involved in the design, specification, and evaluation of industrial steam turbines, particularly critical process compressor drivers. A unified view of blade design concepts and techniques is presented. The book covers advances in modal analysis, fatigue and creep analysis, and aerodynamic theories, along with an overview of commonly used materials and manufacturing processes. This authoritative guide will aid in the design of powerful, efficient, and reliable turbines. COVERAGE INCLUDES: Performance fundamentals and blade loading determination Turbine blade construction, materials, and manufacture System of stress and damage mechanisms Fundamentals of vibration Damping concepts applicable to turbine blades Bladed disk systems Reliability evaluation for blade design Blade life assessment aspects Estimation of risk

Blade Design and Analysis for Steam Turbines

Blade Design and Analysis for Steam Turbines PDF Author: Murari P. Singh
Publisher: McGraw Hill Professional
ISBN: 0071635734
Category : Technology & Engineering
Languages : en
Pages : 384

Get Book

Book Description
THE LATEST STEAM TURBINE BLADE DESIGN AND ANALYTICAL TECHNIQUES Blade Design and Analysis for Steam Turbines provides a concise reference for practicing engineers involved in the design, specification, and evaluation of industrial steam turbines, particularly critical process compressor drivers. A unified view of blade design concepts and techniques is presented. The book covers advances in modal analysis, fatigue and creep analysis, and aerodynamic theories, along with an overview of commonly used materials and manufacturing processes. This authoritative guide will aid in the design of powerful, efficient, and reliable turbines. COVERAGE INCLUDES: Performance fundamentals and blade loading determination Turbine blade construction, materials, and manufacture System of stress and damage mechanisms Fundamentals of vibration Damping concepts applicable to turbine blades Bladed disk systems Reliability evaluation for blade design Blade life assessment aspects Estimation of risk

Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer

Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer PDF Author: Ali A. Ameri
Publisher:
ISBN:
Category : Gas-turbines
Languages : en
Pages : 14

Get Book

Book Description
Presented at the International Gas Turbine and Aeroengine Congress &Exhibition Birmingham, UK - June 10-13, 1996.

Aircraft Propulsion and Gas Turbine Engines

Aircraft Propulsion and Gas Turbine Engines PDF Author: Ahmed F. El-Sayed
Publisher: CRC Press
ISBN: 1466595175
Category : Science
Languages : en
Pages : 1448

Get Book

Book Description
Aircraft Propulsion and Gas Turbine Engines, Second Edition builds upon the success of the book’s first edition, with the addition of three major topic areas: Piston Engines with integrated propeller coverage; Pump Technologies; and Rocket Propulsion. The rocket propulsion section extends the text’s coverage so that both Aerospace and Aeronautical topics can be studied and compared. Numerous updates have been made to reflect the latest advances in turbine engines, fuels, and combustion. The text is now divided into three parts, the first two devoted to air breathing engines, and the third covering non-air breathing or rocket engines.

Gas Turbine Engineering Handbook

Gas Turbine Engineering Handbook PDF Author: Meherwan P. Boyce
Publisher: Elsevier
ISBN: 0123838436
Category : Technology & Engineering
Languages : en
Pages : 1000

Get Book

Book Description
Written by one of the field’s most well known experts, the Gas Turbine Engineering Handbook has long been the standard for engineers involved in the design, selection, maintenance and operation of gas turbines. With far reaching, comprehensive coverage across a range of topics from design specifications to maintenance troubleshooting, this one-stop resource provides newcomers to the industry with all the essentials to learn and fill knowledge gaps, and established practicing gas turbine engineers with a reliable go-to reference. This new edition brings the Gas Turbine Engineering Handbook right up to date with new legislation and emerging topics to help the next generation of gas turbine professionals understand the underlying principles of gas turbine operation, the economic considerations and implications of operating these machines, and how they fit in with alternative methods of power generation. The most comprehensive one-stop source of information on industrial gas turbines, with vital background, maintenance information, legislative details and calculations combined in an essential all-in-one reference Written by an industry-leading consultant and trainer and suitable for use as a training companion or a reliable dip-in guide Includes hard-won information from industry experts in the form of case histories that offer practical trouble-shooting guidance and solutions

Gas Turbine Blade Cooling

Gas Turbine Blade Cooling PDF Author: Chaitanya D Ghodke
Publisher: SAE International
ISBN: 0768095034
Category : Technology & Engineering
Languages : en
Pages : 238

Get Book

Book Description
Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Manuals Combined" ARMY AIRCRAFT GAS TURBINE ENGINES

Manuals Combined Author:
Publisher: Jeffrey Frank Jones
ISBN:
Category :
Languages : en
Pages : 372

Get Book

Book Description
COURSE OVERVIEW: Fulfilling the Army's need for engines of simple design that are easy to operate and maintain, the gas turbine engine is used in all helicopters of Active Army and Reserve Components, and most of the fixed-wing aircraft to include the Light Air Cushioned Vehicle (LACV). We designed this subcourse to teach you theory and principles of the gas turbine engine and some of the basic army aircraft gas turbine engines used in our aircraft today. CHAPTERS OVERVIEW Gas turbine engines can be classified according to the type of compressor used, the path the air takes through the engine, and how the power produced is extracted or used. The chapter is limited to the fundamental concepts of the three major classes of turbine engines, each having the same principles of operation. Chapter 1 is divided into three sections; the first discusses the theory of turbine engines. The second section deals with principles of operation, and section III covers the major engine sections and their description. CHAPTER 2 introduces the fundamental systems and accessories of the gas turbine engine. Each one of these systems must be present to have an operating turbine engine. Section I describes the fuel system and related components that are necessary for proper fuel metering to the engine. The information in CHAPTER 3 is important to you because of its general applicability to gas turbine engines. The information covers the procedures used in testing, inspecting, maintaining, and storing gas turbine engines. Specific procedures used for a particular engine must be those given in the technical manual (TM) covering that engine The two sections of CHAPTER 4 discuss, in detail, the Lycoming T53 series gas turbine engine used in Army aircraft. Section I gives a general description of the T53, describes the engine's five sections, explains engine operation, compares models and specifications, and describes the engine's airflow path. The second section covers major engine assemblies and systems. CHAPTER 5 covers the Lycoming T55 gas turbine engine. Section I gives an operational description of the T55, covering the engine's five sections. Section II covers in detail each of the engine's sections and major systems. The SOLAR T62 auxiliary power unit (APU) is used in place of ground support equipment to start some helicopter engines. It is also used to operate the helicopter hydraulic and electrical systems when this aircraft is on the ground, to check their performance. The T62 is a component of both the CH- 47 and CH-54 helicopters -- part of them, not separate like the ground-support-equipment APU's. On the CH-54, the component is called the auxiliary powerplant rather than the auxiliary power unit, as it is on the CH-47. The two T62's differ slightly. CHAPTER 6 describes the T62 APU; explains its operation; discusses the reduction drive, accessory drive, combustion, and turbine assemblies; and describes the fuel, lubrication, and electrical systems. CHAPTER 7 describes the T63 series turboshaft engine, which is manufactured by the Allison Division of General Motors Corporation. The T63-A-5A is used to power the OH-6A, and the T63-A-700 is in the OH-58A light observation helicopter. Although the engine dash numbers are not the same for each of these, the engines are basically the same. As shown in figure 7.1, the engine consists of four major components: the compressor, accessory gearbox, combustor, and turbine sections. This chapter explains the major sections and related systems. The Pratt and Whitney T73-P-1 and T73-P-700 are the most powerful engines used in Army aircraft. Two of these engines are used to power the CH-54 flying crane helicopter. The T73 design differs in two ways from any of the engines covered previously. The airflow is axial through the engine; it does not make any reversing turns as the airflow of the previous engines did, and the power output shaft extends from the exhaust end. CHAPTER 8 describes and discusses the engine sections and systems. Constant reference to the illustrations in this chapter will help you understand the discussion. TABLE OF CONTENTS: 1 Theory and Principles of Gas Turbine Engines - 2 Major Engine Sections - 3 Systems and Accessories - 4 Testing, Inspection, Maintenance, and Storage Procedures - 5 Lycoming T53 - 6 Lycoming T55 - 7 Solar T62 Auxiliary Power Unit - 8 Allison T62, Pratt & Whitney T73 and T74, and the General Electric T700 - Examination. I

Energy Research Abstracts

Energy Research Abstracts PDF Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 826

Get Book

Book Description


Introduction to Marine Gas Turbines

Introduction to Marine Gas Turbines PDF Author: Naval Education and Training Program Development Center
Publisher:
ISBN:
Category : Marine gas-turbines
Languages : en
Pages : 94

Get Book

Book Description


Introduction to Marine Gas Turbines

Introduction to Marine Gas Turbines PDF Author: United States. Naval Education and Training Command
Publisher:
ISBN:
Category : Marine gas-turbines
Languages : en
Pages : 98

Get Book

Book Description


Official Gazette of the United States Patent and Trademark Office

Official Gazette of the United States Patent and Trademark Office PDF Author: United States. Patent and Trademark Office
Publisher:
ISBN:
Category : Patents
Languages : en
Pages : 1404

Get Book

Book Description