Foundations of User-Centric Cell-Free Massive MIMO

Foundations of User-Centric Cell-Free Massive MIMO PDF Author: Özlem Tugfe Demir
Publisher:
ISBN: 9781680837902
Category :
Languages : en
Pages : 328

Get Book

Book Description
Modern day cellular mobile networks use Massive MIMO technology to extend range and service multiple devices within a cell. This has brought tremendous improvements in the high peak data rates that can be handled. Nevertheless, one of the characteristics of this technology is large variations in the quality of service dependent on where the end user is located in any given cell. This becomes increasingly problematic when we are creating a society where wireless access is supposed to be ubiquitous. When payments, navigation, entertainment, and control of autonomous vehicles are all relying on wireless connectivity the primary goal for future mobile networks should not be to increase the peak rates, but the rates that can be guaranteed to the vast majority of the locations in the geographical coverage area. The cellular network architecture was not designed for high-rate data services but for low-rate voice services, thus it is time to look beyond the cellular paradigm and make a clean-slate network design that can reach the performance requirements of the future. This monograph considers the cell-free network architecture that is designed to reach the aforementioned goal of uniformly high data rates everywhere. The authors introduce the concept of a cell-free network before laying out the foundations of what is required to design and build such a network. They cover the foundations of channel estimation, signal processing, pilot assignment, dynamic cooperation cluster formation, power optimization, fronthaul signaling, and spectral efficiency evaluation in uplink and downlink under different degrees of cooperation among the access points and arbitrary linear combining and precoding. This monograph provides the reader with all the fundamental information required to design and build the next generation mobile networks without being hindered by the inherent restrictions of modern cellular-based technology.

Foundations of User-Centric Cell-Free Massive MIMO

Foundations of User-Centric Cell-Free Massive MIMO PDF Author: Özlem Tugfe Demir
Publisher:
ISBN: 9781680837902
Category :
Languages : en
Pages : 328

Get Book

Book Description
Modern day cellular mobile networks use Massive MIMO technology to extend range and service multiple devices within a cell. This has brought tremendous improvements in the high peak data rates that can be handled. Nevertheless, one of the characteristics of this technology is large variations in the quality of service dependent on where the end user is located in any given cell. This becomes increasingly problematic when we are creating a society where wireless access is supposed to be ubiquitous. When payments, navigation, entertainment, and control of autonomous vehicles are all relying on wireless connectivity the primary goal for future mobile networks should not be to increase the peak rates, but the rates that can be guaranteed to the vast majority of the locations in the geographical coverage area. The cellular network architecture was not designed for high-rate data services but for low-rate voice services, thus it is time to look beyond the cellular paradigm and make a clean-slate network design that can reach the performance requirements of the future. This monograph considers the cell-free network architecture that is designed to reach the aforementioned goal of uniformly high data rates everywhere. The authors introduce the concept of a cell-free network before laying out the foundations of what is required to design and build such a network. They cover the foundations of channel estimation, signal processing, pilot assignment, dynamic cooperation cluster formation, power optimization, fronthaul signaling, and spectral efficiency evaluation in uplink and downlink under different degrees of cooperation among the access points and arbitrary linear combining and precoding. This monograph provides the reader with all the fundamental information required to design and build the next generation mobile networks without being hindered by the inherent restrictions of modern cellular-based technology.

Cell-Free Massive MIMO

Cell-Free Massive MIMO PDF Author: Giovanni Interdonato
Publisher: Linköping University Electronic Press
ISBN: 9179298087
Category : Electronic books
Languages : it
Pages : 75

Get Book

Book Description
The fifth generation of mobile communication systems (5G) is nowadays a reality. 5G networks are been deployed all over the world, and the first 5G-capable devices (e.g., smartphones, tablets, wearable, etc.) are already commercially available. 5G systems provide unprecedented levels of connectivity and quality of service (QoS) to cope with the incessant growth in the number of connected devices and the huge increase in data-rate demand. Massive MIMO (multiple-input multiple-output) technology plays a key role in 5G systems. The underlying principle of this technology is the use of a large number of co-located antennas at the base station, which coherently transmit/receive signals to/from multiple users. This signal co-processing at multiple antennas leads to manifold benefits: array gain, spatial diversity and spatial user multiplexing. These elements enable to meet the QoS requirements established for the 5G systems. The major bottleneck of massive MIMO systems as well as of any cellular network is the inter-cell interference, which affects significantly the cell-edge users, whose performance is already degraded by the path attenuation. To overcome these limitations and provide uniformly excellent service to all the users we need a more radical approach: we need to challenge the cellular paradigm. In this regard, cell-free massive MIMO constitutes the paradigm shift. In the cell-free paradigm, it is not the base station surrounded by the users, but rather it is each user being surrounded by smaller, simpler, serving base stations referred to as access points (APs). In such a system, each user experiences being in the cell-center, and it does not experience any cell boundaries. Hence, the terminology cell-free. As a result, users are not affected by inter-cell interference, and the path attenuation is significantly reduced due to the presence of many APs in their proximity. This leads to impressive performance. Although appealing from the performance viewpoint, the designing and implementation of such a distributed massive MIMO system is a challenging task, and it is the object of this thesis. More specifically, in this thesis we study: Paper A) The large potential of this promising technology in realistic indoor/outdoor scenarios while also addressing practical deployment issues, such as clock synchronization among APs, and cost-efficient implementations. We provide an extensive description of a cell-free massive MIMO system, emphasizing strengths and weaknesses, and pointing out differences and similarities with existing distributed multiple antenna systems, such as Coordinated MultiPoint (CoMP). Paper B) How to preserve the scalability of the system, by proposing a solution related to data processing, network topology and power control. We consider a realistic scenario where multiple central processing units serve disjoint subsets of APs, and compare the spectral efficiency provided by the proposed scalable framework with the canonical cell-free massive MIMO and CoMP. Paper C) How to improve the spectral efficiency (SE) in the downlink (DL), by devising two distributed precoding schemes, referred to as local partial zero-forcing (ZF) and local protective partial ZF, that provide an adaptable trade-off between interference cancelation and boosting of the desired signal, with no additional front-haul overhead, and that are implementable by APs with very few antennas. We derive closed-form expressions for the achievable SE under the assumption of independent Rayleigh fading channel, channel estimation error and pilot contamination. These closed-form expressions are then used to devise optimal max-min fairness power control. Paper D) How to further improve the SE by letting the user estimate the DL channel from DL pilots, instead of relying solely on the knowledge of the channel statistics. We derive an approximate closed-form expression of the DL SE for conjugate beamforming (CB), and assuming independent Rayleigh fading. This expression accounts for beamformed DL pilots, estimation errors and pilot contamination at both the AP and the user side. We devise a sequential convex approximation algorithm to globally solve the max-min fairness power control optimization problem, and a greedy algorithm for uplink (UL) and DL pilot assignment. The latter consists in jointly selecting the UL and DL pilot pair, for each user, that maximizes the smallest SE in the network. Paper E) A precoding scheme that is more suitable when only the channel statistics are available at the users, referred to as enhanced normalized CB. It consists in normalizing the precoding vector by its squared norm in order to reduce the fluctuations of the effective channel seen at the user, and thereby to boost the channel hardening. The performance achieved by this scheme is compared with the CB scheme with DL training (described in Paper D). Paper F) A maximum-likelihood-based method to estimate the channel statistics in the UL, along with an accompanying pilot transmission scheme, that is particularly useful in line-of-sight operation and in scenarios with resource constraints. Pilots are structurally phase-rotated over different coherence blocks to create an effective statistical distribution of the received pilot signal that can be efficiently exploited by the AP when performing the proposed estimation method. The overall conclusion is that cell-free massive MIMO is not a utopia, and a practical, distributed, scalable, high-performance system can be implemented. Today it represents a hot research topic, but tomorrow it might represent a key enabler for beyond-5G technology, as massive MIMO has been for 5G. La quinta generazione dei sistemi radiomobili cellulari (5G) è oggi una realtà. Le reti 5G si stanno diffondendo in tutto il mondo e i dispositivi 5G (ad esempio smartphones, tablets, indossabili, ecc.) sono già disponibili sul mercato. I sistemi 5G garantiscono livelli di connettività e di qualità di servizio senza precedenti, per fronteggiare l’incessante crescita del numero di dispositivi connessi alla rete e della domanda di dati ad alta velocità. La tecnologia Massive MIMO (multiple-input multiple-output) riveste un ruolo fondamentale nei sistemi 5G. Il principio alla base di questa tecnologia è l’impiego di un elevato numero di antenne collocate nella base station (stazione radio base) le quali trasmettono/ricevono segnali, in maniere coerente, a/da più terminali utente. Questo co-processamento del segnale da parte di più antenne apporta molteplici benefici: guadagno di array, diversità spaziale e multiplazione degli utenti nel dominio spaziale. Questi elementi consentono di raggiungere i requisiti di servizio stabiliti per i sistemi 5G. Tuttavia, il limite principale dei sistemi massive MIMO, così come di ogni rete cellulare, è rappresentato dalla interferenza inter-cella (ovvero l’interferenza tra aree di copertura gestite da diverse base stations), la quale riduce in modo significativo le performance degli utenti a bordo cella, già degradate dalle attenuazioni del segnale dovute alla considerevole distanza dalla base station. Per superare queste limitazioni e fornire una qualità del servizio uniformemente eccellente a tutti gli utenti, è necessario un approccio più radicale e guardare oltre il classico paradigma cellulare che caratterizza le attuali architetture di rete. A tal proposito, cell-free massive MIMO (massive MIMO senza celle) costituisce un cambio di paradigma: ogni utente è circondato e servito contemporaneamente da numerose, semplici e di dimensioni ridotte base stations, denominate access points (punti di accesso alla rete). Gli access points cooperano per servire tutti gli utenti nella loro area di copertura congiunta, eliminando l’interferenza inter-cella e il concetto stesso di cella. Non risentendo più dell’effetto “bordo-cella”, gli utenti possono usufruire di qualità di servizio e velocità dati eccellenti. Sebbene attraente dal punto di vista delle performance, l’implementazione di un tale sistema distribuito è una operazione impegnativa ed è oggetto di questa tesi. Piu specificatamente, questa tesi di dottorato tratta: Articolo A) L’enorme potenziale di questa promettente tecnologia in scenari realistici sia indoor che outdoor, proponendo anche delle soluzioni di implementazione flessibili ed a basso costo. Articolo B) Come preservare la scalabilità del sistema, proponendo soluzioni distribuite riguardanti il processamento e la condivisione dei dati, l’architettura di rete e l’allocazione di potenza, ovvero come ottimizzare i livelli di potenza trasmessa dagli access points per ridurre l’interferenza tra utenti e migliorare le performance. Articolo C) Come migliorare l’efficienza spettrale in downlink (da access point verso utente) proponendo due schemi di pre-codifica dei dati di trasmissione, denominati local partial zero-forcing (ZF) e local protective partial ZF, che forniscono un perfetto compromesso tra cancellazione dell’interferenza tra utenti ed amplificazione del segnale desiderato. Articolo D) Come migliorare l’efficienza spettrale in downlink permettendo al terminale utente di stimare le informazioni sulle condizioni istantanee del canale da sequenze pilota, piuttosto che basarsi su informazioni statistiche ed a lungo termine, come convenzionalmente previsto. Articolo E) In alternativa alla soluzione precedente, uno schema di pre-codifica che è più adatto al caso in cui gli utenti hanno a disposizione esclusivamente informazioni statistiche sul canale per poter effettuare la decodifica dei dati. Articolo F) Un metodo per permettere agli access points di stimare, in maniera rapida, le condizioni di canale su base statistica, favorito da uno schema di trasmissione delle sequenze pilota basato su rotazione di fase. Realizzare un sistema cell-free massive MIMO pratico, distribuito, scalabile e performante non è una utopia. Oggi questo concept rappresenta un argomento di ricerca interessante, attraente e stimolante ma in futuro potrebbe costituire un fattore chiave per le tecnologie post-5G, proprio come massive MIMO lo è stato per il 5G. Den femte generationens mobilkommunikationssystem (5G) är numera en verklighet. 5G-nätverk är utplacerade på ett flertal platser världen över och de första 5G-kapabla terminalerna (såsom smarta telefoner, surfplattor, kroppsburna apparater, etc.) är redan kommersiellt tillgängliga. 5G-systemen kan tillhandahålla tidigare oöverträffade nivåer av uppkoppling och servicekvalitet och är designade för en fortsatt oavbruten tillväxt i antalet uppkopplade apparater och ökande datataktskrav. Massiv MIMO-teknologi (eng: multiple-input multiple-output) spelar en nyckelroll i dagens 5G-system. Principen bakom denna teknik är användningen av ett stort antal samlokaliserade antenner vid basstationen, där alla antennerna sänder och tar emot signaler faskoherent till och från flera användare. Gemensam signalbehandling av många antennsignaler ger ett flertal fördelar, såsom hög riktverkan via lobformning, vilket leder till högre datatakter samt möjliggör att flera användare utnyttjar samma radioresurser via rumslig användarmultiplexering. Eftersom en signal kan gå genom flera olika, möjligen oberoende kanaler, så utsätts den för flera olika förändringar samtidigt. Denna mångfald ökar kvaliteten på signalen vid mottagaren och förbättrar radiolänkens robusthet och tillförlitlighet. Detta gör det möjligt att uppfylla de höga kraven på servicekvalitet som fastställts för 5G-systemen. Den största begränsningen för massiva MIMO-system såväl som för alla cellulära mobilnätverk, är störningar från andra celler som påverkar användare på cellkanten väsentligt, vars prestanda redan begränsas av sträckdämpningen på radiokanalen. För att övervinna dessa begränsningar och för att kunna tillhandahålla samma utmärkta servicekvalitet till alla användare behöver vi ett mer radikalt angreppssätt: vi måste utmana cellparadigmet. I detta avseende utgör cellfri massiv-MIMO teknik ett paradigmskifte. I cellfri massive-MIMO är utgångspunkten inte att basstationen är omgiven av användare som den betjänar, utan snarare att varje användare omges av basstationer som de betjänas av. Dessa basstationer, ofta mindre och enklare, kallas accesspunkter (AP). I ett sådant system upplever varje användare att den befinner sig i centrum av systemet och ingen användare upplever några cellgränser. Därav terminologin cellfri. Som ett resultat av detta påverkas inte användarna av inter-cellstörningar och sträckdämpningen reduceras kraftigt på grund av närvaron av många accesspunkter i varje användares närhet. Detta leder till imponerande prestanda. Även om det är tilltalande ur ett prestandaperspektiv så är utformningen och implementeringen av ett sådant distribuerat massivt MIMO-system en utmanande uppgift, och det är syftet med denna avhandling att studera detta. Mer specifikt studerar vi i denna avhandling: A) den mycket stora potentialen med denna teknik i realistiska inomhus- såväl som utomhusscenarier, samt hur man hanterar praktiska implementeringsproblem, såsom klocksynkronisering bland accesspunkter och kostnadseffektiva implementeringar; B) hur man ska uppnå skalbarhet i systemet genom att föreslå lösningar relaterade till databehandling, nätverkstopologi och effektkontroll; C) hur man ökar datahastigheten i nedlänken med hjälp av två nyutvecklade distribuerade överföringsmetoder som tillhandahåller en avvägning mellan störningsundertryckning och förstärkning av önskade signaler, utan att öka mängden intern signalering till de distribuerade accesspunkterna, och som kan implementeras i accesspunkter med mycket få antenner; D) hur man kan förbättra prestandan ytterligare genom att låta användaren estimera nedlänkskanalen med hjälp av nedlänkspiloter, istället för att bara förlita sig på kunskap om kanalstatistik; E) en överföringsmetod för nedlänk som är mer lämpligt när endast kanalstatistiken är tillgänglig för användarna. Prestandan som uppnås genom detta schema jämförs med en utökad variant av den nedlänk-pilotbaserade metoden (beskrivet i föregående punkt); F) en metod för att uppskatta kanalstatistiken i upplänken, samt en åtföljande pilotsändningsmetod, som är särskilt användbart vid direktvägsutbredning (line-of-sight) och i scenarier med resursbegränsningar. Den övergripande slutsatsen är att cellfri massiv MIMO inte är en utopi, och att ett distribuerat, skalbart, samt högpresterande system kan implementeras praktiskt. Idag representerar detta ett hett forskningsämne, men snart kan det visa sig vara en viktig möjliggörare för teknik bortom dagens system, på samma sätt som centraliserad massiv MIMO har varit för de nya 5G-systemen.

Massive MIMO

Massive MIMO PDF Author: Hien Quoc Ngo
Publisher: Linköping University Electronic Press
ISBN: 9175191474
Category :
Languages : en
Pages : 45

Get Book

Book Description
The last ten years have seen a massive growth in the number of connected wireless devices. Billions of devices are connected and managed by wireless networks. At the same time, each device needs a high throughput to support applications such as voice, real-time video, movies, and games. Demands for wireless throughput and the number of wireless devices will always increase. In addition, there is a growing concern about energy consumption of wireless communication systems. Thus, future wireless systems have to satisfy three main requirements: i) having a high throughput; ii) simultaneously serving many users; and iii) having less energy consumption. Massive multiple-input multiple-output (MIMO) technology, where a base station (BS) equipped with very large number of antennas (collocated or distributed) serves many users in the same time-frequency resource, can meet the above requirements, and hence, it is a promising candidate technology for next generations of wireless systems. With massive antenna arrays at the BS, for most propagation environments, the channels become favorable, i.e., the channel vectors between the users and the BS are (nearly) pairwisely orthogonal, and hence, linear processing is nearly optimal. A huge throughput and energy efficiency can be achieved due to the multiplexing gain and the array gain. In particular, with a simple power control scheme, Massive MIMO can offer uniformly good service for all users. In this dissertation, we focus on the performance of Massive MIMO. The dissertation consists of two main parts: fundamentals and system designs of Massive MIMO. In the first part, we focus on fundamental limits of the system performance under practical constraints such as low complexity processing, limited length of each coherence interval, intercell interference, and finite-dimensional channels. We first study the potential for power savings of the Massive MIMO uplink with maximum-ratio combining (MRC), zero-forcing, and minimum mean-square error receivers, under perfect and imperfect channels. The energy and spectral efficiency tradeoff is investigated. Secondly, we consider a physical channel model where the angular domain is divided into a finite number of distinct directions. A lower bound on the capacity is derived, and the effect of pilot contamination in this finite-dimensional channel model is analyzed. Finally, some aspects of favorable propagation in Massive MIMO under Rayleigh fading and line-of-sight (LoS) channels are investigated. We show that both Rayleigh fading and LoS environments offer favorable propagation. In the second part, based on the fundamental analysis in the first part, we propose some system designs for Massive MIMO. The acquisition of channel state information (CSI) is very importantin Massive MIMO. Typically, the channels are estimated at the BS through uplink training. Owing to the limited length of the coherence interval, the system performance is limited by pilot contamination. To reduce the pilot contamination effect, we propose an eigenvalue-decomposition-based scheme to estimate the channel directly from the received data. The proposed scheme results in better performance compared with the conventional training schemes due to the reduced pilot contamination. Another important issue of CSI acquisition in Massive MIMO is how to acquire CSI at the users. To address this issue, we propose two channel estimation schemes at the users: i) a downlink "beamforming training" scheme, and ii) a method for blind estimation of the effective downlink channel gains. In both schemes, the channel estimation overhead is independent of the number of BS antennas. We also derive the optimal pilot and data powers as well as the training duration allocation to maximize the sum spectral efficiency of the Massive MIMO uplink with MRC receivers, for a given total energy budget spent in a coherence interval. Finally, applications of Massive MIMO in relay channels are proposed and analyzed. Specifically, we consider multipair relaying systems where many sources simultaneously communicate with many destinations in the same time-frequency resource with the help of a massive MIMO relay. A massive MIMO relay is equipped with many collocated or distributed antennas. We consider different duplexing modes (full-duplex and half-duplex) and different relaying protocols (amplify-and-forward, decode-and-forward, two-way relaying, and one-way relaying) at the relay. The potential benefits of massive MIMO technology in these relaying systems are explored in terms of spectral efficiency and power efficiency.

Fundamentals of Wireless Communication

Fundamentals of Wireless Communication PDF Author: David Tse
Publisher: Cambridge University Press
ISBN: 9780521845274
Category : Computers
Languages : en
Pages : 598

Get Book

Book Description
This textbook takes a unified view of the fundamentals of wireless communication and explains cutting-edge concepts in a simple and intuitive way. An abundant supply of exercises make it ideal for graduate courses in electrical and computer engineering and it will also be of great interest to practising engineers.

Fundamentals of Massive MIMO

Fundamentals of Massive MIMO PDF Author: Thomas L. Marzetta
Publisher: Cambridge University Press
ISBN: 1316813088
Category : Technology & Engineering
Languages : en
Pages : 240

Get Book

Book Description
Written by pioneers of the concept, this is the first complete guide to the physical and engineering principles of Massive MIMO. Assuming only a basic background in communications and statistical signal processing, it will guide readers through key topics in multi-cell systems such as propagation modeling, multiplexing and de-multiplexing, channel estimation, power control, and performance evaluation. The authors' unique capacity-bounding approach will enable readers to carry out effective system performance analyses and develop advanced Massive MIMO techniques and algorithms. Numerous case studies, as well as problem sets and solutions accompanying the book online, will help readers put knowledge into practice and acquire the skill set needed to design and analyze complex wireless communication systems. Whether you are a graduate student, researcher, or industry professional working in the field of wireless communications, this will be an indispensable guide for years to come.

Massive MIMO Networks

Massive MIMO Networks PDF Author: Emil Björnson
Publisher:
ISBN: 9781680839852
Category : Technology & Engineering
Languages : en
Pages : 0

Get Book

Book Description
Massive MIMO Networks is the first book on the subject to cover the spatial channel correlation and consider rigorous signal processing design essential for the complete understanding by the students, practicing engineers and researchers working on modern day communication systems.

Optimal Resource Allocation in Coordinated Multi-Cell Systems

Optimal Resource Allocation in Coordinated Multi-Cell Systems PDF Author: Emil Björnson
Publisher: Now Pub
ISBN: 9781601986382
Category : Technology & Engineering
Languages : en
Pages : 282

Get Book

Book Description
Optimal Resource Allocation in Coordinated Multi-Cell Systems provides a solid grounding and understanding for optimization of practical multi-cell systems and will be of interest to all researchers and engineers working on the practical design of such systems.

End-to-End Quality of Service over Cellular Networks

End-to-End Quality of Service over Cellular Networks PDF Author: Gerardo Gomez
Publisher: John Wiley & Sons
ISBN: 9780470011805
Category : Technology & Engineering
Languages : en
Pages : 328

Get Book

Book Description
This comprehensive resource contains a detailed methodology for assessing, analyzing and optimizing End-to-End Service Performance under different cellular technologies (GPRS, EDGE, WCDMA and CDMA2000). It includes guidelines for analyzing numerous different services, including FTP, WEB streaming and POC, including examples of analysis and troubleshooting from a user point-of-view. Focuses on the end-user perspective, with a detailed analysis of the main sources of service performance degradation and a comprehensive description of mobile data services Includes a detailed presentation of generic key performance indicators (KPIs) which can be re-defined to comply with each particular network Provides service performance benchmarking for different technologies from real networks Explores a new approach to service management known as customer experience management, including the reasons why it is overcoming traditional service management and its impact on revenues and customer satisfaction Illustrates all points throughout using real world examples gleaned from cutting-edge research This book draws together findings from authoritative sources that will appeal to cellular network operators and vendors. The theory-based, practical approach will be of interest to postgraduate students and telecommunication and consulting companies working in the field of cellular technologies.

Cognitive Radio Architecture

Cognitive Radio Architecture PDF Author: Joseph Mitola, III
Publisher: John Wiley & Sons
ISBN: 0471742449
Category : Technology & Engineering
Languages : en
Pages : 486

Get Book

Book Description
An exciting new technology, described by the one who invented it This is the first book dedicated to cognitive radio, a promising new technology that is poised to revolutionize the telecommunications industry with increased wireless flexibility. Cognitive radio technology integrates computational intelligence into software-defined radio for embedded intelligent agents that adapt to RF environments and user needs. Using this technology, users can more fully exploit the radio spectrum and services available from wireless connectivity. For example, an attempt to send a 10MB e-mail in a zone where carrier charges are high might cause a cognitive radio to alert its user and suggest waiting until getting to the office to use the LAN instead. Cognitive Radio Architecture examines an "ideal cognitive radio" that features autonomous machine learning, computer vision, and spoken or written language perception. The author of this exciting new book is the inventor of the technology and a leader in the field. Following his step-by-step introduction, readers can start building aware/adaptive radios and then make steps towards cognitive radio. After an introduction to adaptive, aware, and cognitive radio, the author develops three major themes in three sections: Foundations Radio Competence User Domain Competence The book makes the design principles of cognitive radio more accessible to students of teleinformatics, as well as to wireless communications systems developers. It therefore embraces the practice of cognitive radio as well as the theory. In particular, the publication develops a cognitive architecture that integrates disparate disciplines, including autonomous machine learning, computer vision, and language perception technologies. An accompanying CD-ROM contains the Java source code and compiled class files for applications developed in the book. In addition, for the convenience of the reader, Web resources introducing key concepts such as speech applications programmer interfaces (APIs) are included. Although still five to ten years away from full deployment, telecommunications giants and research labs around the world are already dedicating R&D to this new technology. Telecommunications engineers as well as advanced undergraduate and graduate students can learn the promising possibilities of this innovative technology from the one who invented it. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.

Millimeter Wave Wireless Communications

Millimeter Wave Wireless Communications PDF Author: Theodore S. Rappaport
Publisher: Pearson Education
ISBN: 0132172283
Category : Computers
Languages : en
Pages : 705

Get Book

Book Description
The Definitive, Comprehensive Guide to Cutting-Edge Millimeter Wave Wireless Design “This is a great book on mmWave systems that covers many aspects of the technology targeted for beginners all the way to the advanced users. The authors are some of the most credible scholars I know of who are well respected by the industry. I highly recommend studying this book in detail.” —Ali Sadri, Ph.D., Sr. Director, Intel Corporation, MCG mmWave Standards and Advanced Technologies Millimeter wave (mmWave) is today's breakthrough frontier for emerging wireless mobile cellular networks, wireless local area networks, personal area networks, and vehicular communications. In the near future, mmWave products, systems, theories, and devices will come together to deliver mobile data rates thousands of times faster than today's existing cellular and WiFi networks. In Millimeter Wave Wireless Communications, four of the field's pioneers draw on their immense experience as researchers, entrepreneurs, inventors, and consultants, empowering engineers at all levels to succeed with mmWave. They deliver exceptionally clear and useful guidance for newcomers, as well as the first complete desk reference for design experts. The authors explain mmWave signal propagation, mmWave circuit design, antenna designs, communication theory, and current standards (including IEEE 802.15.3c, Wireless HD, and ECMA/WiMedia). They cover comprehensive mmWave wireless design issues, for 60 GHz and other mmWave bands, from channel to antenna to receiver, introducing emerging design techniques that will be invaluable for research engineers in both industry and academia. Topics include Fundamentals: communication theory, channel propagation, circuits, antennas, architectures, capabilities, and applications Digital communication: baseband signal/channel models, modulation, equalization, error control coding, multiple input multiple output (MIMO) principles, and hardware architectures Radio wave propagation characteristics: indoor and outdoor applications Antennas/antenna arrays, including on-chip and in-package antennas, fabrication, and packaging Analog circuit design: mmWave transistors, fabrication, and transceiver design approaches Baseband circuit design: multi–gigabit-per-second, high-fidelity DAC and ADC converters Physical layer: algorithmic choices, design considerations, and impairment solutions; and how to overcome clipping, quantization, and nonlinearity Higher-layer design: beam adaptation protocols, relaying, multimedia transmission, and multiband considerations 60 GHz standardization: IEEE 802.15.3c for WPAN, Wireless HD, ECMA-387, IEEE 802.11ad, Wireless Gigabit Alliance (WiGig)