Field-Driven Micro and Nanorobots for Biology and Medicine

Field-Driven Micro and Nanorobots for Biology and Medicine PDF Author: Yu Sun
Publisher: Springer Nature
ISBN: 3030801977
Category : Technology & Engineering
Languages : en
Pages : 422

Get Book

Book Description
This book describes the substantial progress recently made in the development of micro and nanorobotic systems, utilizing magnetic, optical, acoustic, electrical, and other actuation fields. It covers several areas of micro and nanorobotics including robotics, materials science, and biomedical engineering. Field-Driven Micro and Nanorobots for Biology and Medicine provides readers with fundamental physics at the micro and nano scales, state-of-the-art technical advances in field-driven micro and nanorobots, and applications in biological and biomedical disciplines.

Field-Driven Micro and Nanorobots for Biology and Medicine

Field-Driven Micro and Nanorobots for Biology and Medicine PDF Author: Yu Sun
Publisher: Springer Nature
ISBN: 3030801977
Category : Technology & Engineering
Languages : en
Pages : 422

Get Book

Book Description
This book describes the substantial progress recently made in the development of micro and nanorobotic systems, utilizing magnetic, optical, acoustic, electrical, and other actuation fields. It covers several areas of micro and nanorobotics including robotics, materials science, and biomedical engineering. Field-Driven Micro and Nanorobots for Biology and Medicine provides readers with fundamental physics at the micro and nano scales, state-of-the-art technical advances in field-driven micro and nanorobots, and applications in biological and biomedical disciplines.

Biomedical Micro- and Nanorobots in Disease Treatment

Biomedical Micro- and Nanorobots in Disease Treatment PDF Author: Chun Mao
Publisher: John Wiley & Sons
ISBN: 3527839755
Category : Science
Languages : en
Pages : 261

Get Book

Book Description
Biomedical Micro- and Nanorobots in Disease Treatment Comprehensive resource covering fundamentals at the micro and nano scales, technical advances in micro- and nanorobots, and their biomedical applications Biomedical Micro- and Nanorobots in Disease Treatment: Design, Preparation, and Applications provides foundational knowledge on the subject in the fields of biomaterials, nanotechnology, and biomedicine, discusses the applications of micro- and nanorobots in the cardiovascular, cancer, ophthalmic, orthopedic, gastrointestinal, and nervous system disease treatment, and addresses their biosafety, autonomous motion behavior, and future development trends. The two highly qualified authors comprehensively and systematically introduces the concept source, definition, classification, autonomous movement behavior, and functionality of the technology, providing readers with new ideas, technologies, and methods for modern biomedical research, while also expanding new disease diagnosis, treatment principles, and possible application modes to paint a complete picture of the potential of the technology. Sample topics covered in Biomedical Micro- and Nanorobots in Disease Treatment: Design, Preparation, and Applications include: Substrate selection between metal, inorganic, organic, natural, and hybrid materials, as well as driving systems based on biological components, external fields, and chemical reactions In vivo tracking technologies, including fluorescence imaging, magnetic resonance imaging (MRI), radionuclide and ultrasonic imaging, and other imaging methods Biosafety of micro- and nanorobot substrate through material composition, micro- and nanoscale influence, ultimate destiny, and genotoxicity Trending behavior mechanisms in magnetotactic, phototactic, and chemotaxis systems, and motion control through speed and direction control modes Study on therapeutic mechanism and application for various physiological diseases Summarizing research progress in the preparation, biosafety, functionality, and therapeutic effects of the technology, Biomedical Micro- and Nanorobots in Disease Treatment: Design, Preparation, and Applications is an important and timely resource for biochemists, materials scientists, medicinal chemists, pharmaceutical chemists, bioengineers, biotechnologists, and the greater biotechnological industry.

Nanorobotics

Nanorobotics PDF Author: Constantinos Mavroidis
Publisher: Springer Science & Business Media
ISBN: 1461421195
Category : Technology & Engineering
Languages : en
Pages : 464

Get Book

Book Description
Nanorobots can be defined as intelligent systems with overall dimensions at or below the micrometer range that are made of assemblies of nanoscale components with individual dimensions ranging between 1 to 100 nm. These devices can now perform a wide variety of tasks at the nanoscale in a wide variety of fields including but not limited to fields such as manufacturing, medicine, supply chain, biology, and aerospace. Nanorobotics: Current Approaches and Techniques offers a comprehensive overview of this emerging interdisciplinary field with a wide ranging discussion that includes nano-manipulation and industrial nanorobotics, nanorobotic manipulation in biology and medicine, nanorobotic sensing, navigation and swarm behavior and CNT, and protein and DNA-based nanorobotics.

Artificial Intelligence in the Age of Nanotechnology

Artificial Intelligence in the Age of Nanotechnology PDF Author: Jaber, Wassim
Publisher: IGI Global
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book

Book Description
In the world of academia, scholars and researchers are confronted with a rapidly expanding knowledge base in Artificial Intelligence (AI) and nanotechnology. The integration of these two groundbreaking fields presents an intricate web of concepts, innovations, and interdisciplinary applications that can overwhelm even the most astute academic minds. Staying up to date with the latest developments and effectively navigating this complex terrain has become a pressing challenge for those striving to contribute meaningfully to these fields. Artificial Intelligence in the Age of Nanotechnology is a transformative solution meticulously crafted to address the academic community's knowledge gaps and challenges. This comprehensive book serves as the guiding light for scholars, researchers, and students grappling with the dynamic synergy between AI and Nanotechnology. It offers a structured and authoritative exploration of the core principles and transformative applications of these domains across diverse fields. By providing clarity and depth, it empowers academics to stay at the forefront of innovation and make informed contributions.

Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine

Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine PDF Author: Ki-Taek Lim
Publisher: Springer Nature
ISBN: 3031160843
Category : Science
Languages : en
Pages : 463

Get Book

Book Description
Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine "Nanorobotics and nanodiagnostics” can be defined as a new generation of biohybrid and nanorobotics that translate fundamental biological principles into engineering design rules, or integrative living components into synthetic structures to create biorobots and nanodiagnotics that perform like natural systems. Nanorobots or nanobots are structured of a nanoscale made of individual assemblies. They can be termed as intelligent systems manufactured with self-assembly strategies by chemical, physical and biological approaches. The nanorobot can determine the structure and enhance the adaptability to the environment in interdisciplinary tasks. "Nanorobotics and nanodiagnostics" is a new generation of biohybrid that translates fundamental biological principles into engineering design rules to create biorobots that perform like natural systems. These biorobotics and diagnostics can now perform various missions to be accomplished certain tasks in the research areas such as integrative biology and biomedicine. "Nanorobotics and Nanodiagnostics in Integrative Biology and Biomedicine" sheds light on a comprehensive overview of the multidisciplinary areas that explore nanotherapeutics and nanorobotic manipulation in biology and medicine. It provides up-to-date knowledge of the promising fields of integrative biology and biomedicine for nano-assisted biorobotics and diagnostics to detect and treat diseases that will enable new scientific discoveries. /div

Collective Behavior of Magnetic Micro/Nanorobots

Collective Behavior of Magnetic Micro/Nanorobots PDF Author: Qianqian Wang
Publisher: CRC Press
ISBN: 100383065X
Category : Technology & Engineering
Languages : en
Pages : 360

Get Book

Book Description
Collective Behavior of Magnetic Micro/Nanorobots: Control, Imaging, and Applications reviews recent advances in the design and construction of magnetic collective micro/nanorobot systems, and promotes the bridging of the gap between their theoretical investigation and practical applications. By summarizing the recent progress in control, imaging, and biomedical applications of collective micro/nanorobots, the authors show the big picture of micro/nanorobotics and the roadmap of collective micro/nanorobots. They then discuss the control, imaging, and biomedical applications of collective micro/nanorobots, respectively, demonstrating the state-of-the-art techniques and ideas for designing systems of collective micro/nanorobots that can help researchers have a better understanding and further stimulate the development of such an exciting field. This book is suitable for scientists, engineers, and students involved in the study of robotics, control, materials, and mechanical/electrical engineering.

Selected Topics in Micro/Nano-robotics for Biomedical Applications

Selected Topics in Micro/Nano-robotics for Biomedical Applications PDF Author: Yi Guo
Publisher: Springer Science & Business Media
ISBN: 1441984119
Category : Technology & Engineering
Languages : en
Pages : 194

Get Book

Book Description
Micro/Nano-robotics for Biomedical Applications features a system approach and incorporates modern methodologies in autonomous mobile robots for programmable and controllable micro/nano-robots aiming at biomedical applications. The book provides chapters of instructional materials in micro/nanorobotics for biomedical applications. The book features lecture units on micro/nanorobot components and techniques, including sensors, actuator, power supply, and micro/nano-fabrication and assembly. It also contains case studies on using micro/nano-robots in biomedical environments and in biomedicine, as well as a design example to conceptually develop a Vitamin-pill sized robot to enter human’s gastrointestinal tract. Laboratory modules to teach robot navigation and cooperation methods suitable to biomedical applications will be also provided based on existing simulation and robot platforms.

Active Biohybrid Nanostructures For Biomedical Applications

Active Biohybrid Nanostructures For Biomedical Applications PDF Author: Vincent Mauricio Kadiri
Publisher: Cuvillier Verlag
ISBN: 3736965508
Category : Science
Languages : en
Pages : 199

Get Book

Book Description
Nanostructures, especially biohybrid nanostructures have long been imagined as promising carriers in (bio)medical applications such as drug and gene delivery. However, few nanomedical applications, apart from liposomes, have seen widespread adoption. All available biomedical nanosystems to date rely on passive diffusion for their dispersal and very few studies demonstrate chemical targeting. Nature, on the other hand, has evolved many ways of combining highly specific targeting and active microscale motion, e.g., chemotaxis, magnetotaxis, and phototaxis of bacteria and microorganisms. In order to realize synthetic nanostructures and systems that can rival natural ones, a number of challenges still lie ahead of us. In this thesis, the author introduces examples of bioinspired and biohybrid nanostructures that address some of these challenges. Two material platforms are developed in this thesis, one based on M13 bacteriophages and one on FePt-based nanomotors. These systems can be viewed as very different but equally promising active biohybrid nanostructures. The introduced active biohybrid nanostructures are completely biocompatible and in the case of FePt nanodevices also enable precise actuated motion and targeting. The tools presented in this thesis are general and may help in the development of new biohybrid nanodevices for biomedical applications and therapies.

Innovative Diagnostics and Treatment: Nanorobotics and Stem Cells

Innovative Diagnostics and Treatment: Nanorobotics and Stem Cells PDF Author: Tomasz Jadczyk
Publisher: Springer
ISBN: 9811045275
Category : Technology & Engineering
Languages : en
Pages : 61

Get Book

Book Description
This book focuses on nanorobotic agents and stem cells for biomedical applications.It is intended for researchers and clinicians interested in innovative diagnostic and therapeutic strategies based on nanorobots and stem cells.It presents current advances in the field of molecular machines, which could be applied to generate novel therapeutic-diagnostic systems.

Encyclopedia Of Medical Robotics, The (In 4 Volumes)

Encyclopedia Of Medical Robotics, The (In 4 Volumes) PDF Author:
Publisher: World Scientific
ISBN: 9813232242
Category : Medical
Languages : en
Pages : 1555

Get Book

Book Description
The Encyclopedia of Medical Robotics combines contributions in four distinct areas of Medical robotics, namely: Minimally Invasive Surgical Robotics, Micro and Nano Robotics in Medicine, Image-guided Surgical Procedures and Interventions, and Rehabilitation Robotics. The volume on Minimally Invasive Surgical Robotics focuses on robotic technologies geared towards challenges and opportunities in minimally invasive surgery and the research, design, implementation and clinical use of minimally invasive robotic systems. The volume on Micro and Nano robotics in Medicine is dedicated to research activities in an area of emerging interdisciplinary technology that is raising new scientific challenges and promising revolutionary advancement in applications such as medicine and biology. The size and range of these systems are at or below the micrometer scale and comprise assemblies of micro and nanoscale components. The volume on Image-guided Surgical Procedures and Interventions focuses primarily on the use of image guidance during surgical procedures and the challenges posed by various imaging environments and how they related to the design and development of robotic systems as well as their clinical applications. This volume also has significant contributions from the clinical viewpoint on some of the challenges in the domain of image-guided interventions. Finally, the volume on Rehabilitation Robotics is dedicated to the state-of-the-art of an emerging interdisciplinary field where robotics, sensors, and feedback are used in novel ways to re-learn, improve, or restore functional movements in humans.Volume 1, Minimally Invasive Surgical Robotics, focuses on an area of robotic applications that was established in the late 1990s, after the first robotics-assisted minimally invasive surgical procedure. This area has since received significant attention from industry and researchers. The teleoperated and ergonomic features of these robotic systems for minimally invasive surgery (MIS) have been able to reduce or eliminate most of the drawbacks of conventional (laparoscopic) MIS. Robotics-assisted MIS procedures have been conducted on over 3 million patients to date — primarily in the areas of urology, gynecology and general surgery using the FDA approved da Vinci® surgical system. The significant commercial and clinical success of the da Vinci® system has resulted in substantial research activity in recent years to reduce invasiveness, increase dexterity, provide additional features such as image guidance and haptic feedback, reduce size and cost, increase portability, and address specific clinical procedures. The area of robotic MIS is therefore in a state of rapid growth fueled by new developments in technologies such as continuum robotics, smart materials, sensing and actuation, and haptics and teleoperation. An important need arising from the incorporation of robotic technology for surgery is that of training in the appropriate use of the technology, and in the assessment of acquired skills. This volume covers the topics mentioned above in four sections. The first section gives an overview of the evolution and current state the da Vinci® system and clinical perspectives from three groups who use it on a regular basis. The second focuses on the research, and describes a number of new developments in surgical robotics that are likely to be the basis for the next generation of robotic MIS systems. The third deals with two important aspects of surgical robotic systems — teleoperation and haptics (the sense of touch). Technology for implementing the latter in a clinical setting is still very much at the research stage. The fourth section focuses on surgical training and skills assessment necessitated by the novelty and complexity of the technologies involved and the need to provide reliable and efficient training and objective assessment in the use of robotic MIS systems.In Volume 2, Micro and Nano Robotics in Medicine, a brief historical overview of the field of medical nanorobotics as well as the state-of-the-art in the field is presented in the introductory chapter. It covers the various types of nanorobotic systems, their applications and future directions in this field. The volume is divided into three themes related to medical applications. The first theme describes the main challenges of microrobotic design for propulsion in vascular media. Such nanoscale robotic agents are envisioned to revolutionize medicine by enabling minimally invasive diagnostic and therapeutic procedures. To be useful, nanorobots must be operated in complex biological fluids and tissues, which are often difficult to penetrate. In this section, a collection of four papers review the potential medical applications of motile nanorobots, catalytic-based propelling agents, biologically-inspired microrobots and nanoscale bacteria-enabled autonomous drug delivery systems. The second theme relates to the use of micro and nanorobots inside the body for drug-delivery and surgical applications. A collection of six chapters is presented in this segment. The first chapter reviews the different robot structures for three different types of surgery, namely laparoscopy, catheterization, and ophthalmic surgery. It highlights the progress of surgical microrobotics toward intracorporeally navigated mechanisms for ultra-minimally invasive interventions. Then, the design of different magnetic actuation platforms used in micro and nanorobotics are described. An overview of magnetic actuation-based control methods for microrobots, with eventually biomedical applications, is also covered in this segment. The third theme discusses the various nanomanipulation strategies that are currently used in biomedicine for cell characterization, injection, fusion and engineering. In-vitro (3D) cell culture has received increasing attention since it has been discovered to provide a better simulation environment of in-vivo cell growth. Nowadays, the rapid progress of robotic technology paves a new path for the highly controllable and flexible 3D cell assembly. One chapter in this segment discusses the applications of micro-nano robotic techniques for 3D cell culture using engineering approaches. Because cell fusion is important in numerous biological events and applications, such as tissue regeneration and cell reprogramming, a chapter on robotic-tweezers cell manipulation system to achieve precise laser-induced cell fusion using optical trapping has been included in this volume. Finally, the segment ends with a chapter on the use of novel MEMS-based characterization of micro-scale tissues instead of mechanical characterization for cell lines studies.Volume 3, Image-guided Surgical Procedures and Interventions, focuses on several aspects ranging from understanding the challenges and opportunities in this domain, to imaging technologies, to image-guided robotic systems for clinical applications. The volume includes several contributions in the area of imaging in the areas of X-Ray fluoroscopy, CT, PET, MR Imaging, Ultrasound imaging, and optical coherence tomography. Ultrasound-based diagnostics and therapeutics as well as ultrasound-guided planning and navigation are also included in this volume in addition to multi-modal imaging techniques and its applications to surgery and various interventions. The application of multi-modal imaging and fusion in the area of prostate biopsy is also covered. Imaging modality compatible robotic systems, sensors and actuator technologies for use in the MRI environment are also included in this work., as is the development of the framework incorporating image-guided modeling for surgery and intervention. Finally, there are several chapters in the clinical applications domain covering cochlear implant surgery, neurosurgery, breast biopsy, prostate cancer treatment, endovascular interventions, neurovascular interventions, robotic capsule endoscopy, and MRI-guided neurosurgical procedures and interventions.Volume 4, Rehabilitation Robotics, is dedicated to the state-of-the-art of an emerging interdisciplinary field where robotics, sensors, and feedback are used in novel ways to relearn, improve, or restore functional movements in humans. This volume attempts to cover a number of topics relevant to the field. The first section addresses an important activity in our daily lives: walking, where the neuromuscular system orchestrates the gait, posture, and balance. Conditions such as stroke, vestibular deficits, or old age impair this important activity. Three chapters on robotic training, gait rehabilitation, and cooperative orthoses describe the current works in the field to address this issue. The second section covers the significant advances in and novel designs of soft actuators and wearable systems that have emerged in the area of prosthetic lower limbs and ankles in recent years, which offer potential for both rehabilitation and human augmentation. These are described in two chapters. The next section addresses an important emphasis in the field of medicine today that strives to bring rehabilitation out from the clinic into the home environment, so that these medical aids are more readily available to users. The current state-of-the-art in this field is described in a chapter. The last section focuses on rehab devices for the pediatric population. Their impairments are life-long and rehabilitation robotics can have an even bigger impact during their lifespan. In recent years, a number of new developments have been made to promote mobility, socialization, and rehabilitation among the very young: the infants and toddlers. These aspects are summarized in two chapters of this volume.