Thermomechanical Fatigue of Ceramic-Matrix Composites

Thermomechanical Fatigue of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: John Wiley & Sons
ISBN: 3527346376
Category : Technology & Engineering
Languages : en
Pages : 490

Get Book

Book Description
Guides researchers and practitioners toward developing highly reliable ceramic-matrix composites The book systematically introduces the thermomechanical fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs) and environmental barrier coatings, including cyclic loading/unloading tensile behavior, cyclic fatigue behavior, dwell-fatigue behavior, thermomechanical fatigue behavior, and interface degradation behavior. It discusses experimental verification of CMCs and explains how to determine the thermomechanical properties. It also presents damage evolution models, lifetime prediction methods, and interface degradation rules. Thermomechanical Fatigue of Ceramic-Matrix Composites offers chapters covering unidirectional ceramic-matrix composites and cross-ply and 2D woven ceramic-matrix composites. For cyclic fatigue behavior of CMCs, it looks at the effects of fiber volume fraction, fatigue peak stress, fatigue stress ratio, matrix crack spacing, matrix crack mode, and woven structure on fatigue damage evolution. Both the Dwell-fatigue damage evolution and lifetime predictions models are introduced in the next chapter. Experimental comparisons of the cross-ply SiC/MAS composite, 2D SiC/SiC composite, and 2D NextelTM 720/Alumina composite are also included. Remaining sections examine: thermomechanical fatigue hysteresis loops; in-phase thermomechanical fatigue damage; out-of-phase thermomechanical fatigue; interface degradation models; and much more. -Offers unique content dedicated to thermomechanical fatigue behavior of ceramic-matrix composites (CMCs) and environmental barrier coatings -Features comprehensive data tables and experimental verifications -Covers a highly application-oriented subject?CMCs are being increasingly utilized in jet engines, industrial turbines, and exhaust systems Thermomechanical Fatigue of Ceramic-Matrix Composites is an excellent book for developers and users of CMCs, as well as organizations involved in evaluation and characterization of CMCs. It will appeal to materials scientists, construction engineers, process engineers, and mechanical engineers.

Thermomechanical Fatigue of Ceramic-Matrix Composites

Thermomechanical Fatigue of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: John Wiley & Sons
ISBN: 3527346376
Category : Technology & Engineering
Languages : en
Pages : 490

Get Book

Book Description
Guides researchers and practitioners toward developing highly reliable ceramic-matrix composites The book systematically introduces the thermomechanical fatigue behavior of fiber-reinforced ceramic-matrix composites (CMCs) and environmental barrier coatings, including cyclic loading/unloading tensile behavior, cyclic fatigue behavior, dwell-fatigue behavior, thermomechanical fatigue behavior, and interface degradation behavior. It discusses experimental verification of CMCs and explains how to determine the thermomechanical properties. It also presents damage evolution models, lifetime prediction methods, and interface degradation rules. Thermomechanical Fatigue of Ceramic-Matrix Composites offers chapters covering unidirectional ceramic-matrix composites and cross-ply and 2D woven ceramic-matrix composites. For cyclic fatigue behavior of CMCs, it looks at the effects of fiber volume fraction, fatigue peak stress, fatigue stress ratio, matrix crack spacing, matrix crack mode, and woven structure on fatigue damage evolution. Both the Dwell-fatigue damage evolution and lifetime predictions models are introduced in the next chapter. Experimental comparisons of the cross-ply SiC/MAS composite, 2D SiC/SiC composite, and 2D NextelTM 720/Alumina composite are also included. Remaining sections examine: thermomechanical fatigue hysteresis loops; in-phase thermomechanical fatigue damage; out-of-phase thermomechanical fatigue; interface degradation models; and much more. -Offers unique content dedicated to thermomechanical fatigue behavior of ceramic-matrix composites (CMCs) and environmental barrier coatings -Features comprehensive data tables and experimental verifications -Covers a highly application-oriented subject?CMCs are being increasingly utilized in jet engines, industrial turbines, and exhaust systems Thermomechanical Fatigue of Ceramic-Matrix Composites is an excellent book for developers and users of CMCs, as well as organizations involved in evaluation and characterization of CMCs. It will appeal to materials scientists, construction engineers, process engineers, and mechanical engineers.

Effects of Temperature and Steam Environment on Fatigue Behavior of Three SIC/SIC Ceramic Matrix Composites

Effects of Temperature and Steam Environment on Fatigue Behavior of Three SIC/SIC Ceramic Matrix Composites PDF Author: Vipul Sharma
Publisher:
ISBN:
Category : Ceramic-matrix composites
Languages : en
Pages : 408

Get Book

Book Description


Thermomechanical fatigue behavior of materials

Thermomechanical fatigue behavior of materials PDF Author: Michael J. Verrilli
Publisher: ASTM International
ISBN: 080312001X
Category :
Languages : en
Pages : 382

Get Book

Book Description


Damage, Fracture, and Fatigue of Ceramic-matrix Composites

Damage, Fracture, and Fatigue of Ceramic-matrix Composites PDF Author: Longbiao Li
Publisher:
ISBN: 9789811317842
Category : Ceramic-matrix composites
Languages : en
Pages :

Get Book

Book Description
"This book focuses on the damage, fracture and fatigue of ceramic-matrix composites. It investigates tensile damage and fracture, fatigue hysteresis, and the properties of interfaces subjected to cyclic fatigue loading. Further, it predicts fatigue life at room and elevated temperatures using newly developed damage models and methods, and it analyzes and compares damage, fracture and fatigue behavior of different fiber performs: unidirectional, cross-ply, 2D and 2.5D woven. The developed models and methods can be used to predict the damage and lifetime of ceramic-matrix composites during applications on hot section components. Ceramic-matrix composites (CMCs) are high-temperature structural materials with the significant advantages of high specific strength, high specific modulus, high temperature resistance and good thermal stability, which play a crucial role in the development of high thrust weight ratio aero engines. The critical nature of the application of these advanced materials makes comprehensive characterization a necessity, and as such this book provides designers with essential information pertaining not only to the strength of the materials, but also to their fatigue and damage characteristics."--

High Temperature Mechanical Behavior of Ceramic-Matrix Composites

High Temperature Mechanical Behavior of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: John Wiley & Sons
ISBN: 3527349030
Category : Technology & Engineering
Languages : en
Pages : 386

Get Book

Book Description
High Temperature Mechanical Behavior of Ceramic-Matrix Composites Covers the latest research on the high-temperature mechanical behavior of ceramic-matrix composites Due to their high temperature resistance, strength and rigidity, relatively light weight, and corrosion resistance, ceramic-matrix composites (CMCs) are widely used across the aerospace and energy industries. As these advanced composites of ceramics and various fibers become increasingly important in the development of new materials, understanding the high-temperature mechanical behavior and failure mechanisms of CMCs is essential to ensure the reliability and safety of practical applications. High Temperature Mechanical Behavior of Ceramic-Matrix Composites examines the behavior of CMCs at elevated temperature—outlining the latest developments in the field and presenting the results of recent research on different CMC characteristics, material properties, damage states, and temperatures. This up-to-date resource investigates the high-temperature behavior of CMCs in relation to first matrix cracking, matrix multiple cracking, tensile damage and fracture, fatigue hysteresis loops, stress-rupture, vibration damping, and more. This authoritative volume: Details the relationships between various high-temperature conditions and experiment results Features an introduction to the tensile, vibration, fatigue, and stress-rupture behavior of CMCs at elevated temperatures Investigates temperature- and time-dependent cracking stress, deformation, damage, and fracture of fiber-reinforced CMCs Includes full references and internet links to source material Written by a leading international researcher in the field, High Temperature Mechanical Behavior of Ceramic-Matrix Composites is an invaluable resource for materials scientists, surface chemists, organic chemists, aerospace engineers, and other professionals working with CMCs.

Thermo-mechanical Fatigue Behavior of Cross-ply Ceramic Matrix Composite Under Tension-tension Loading

Thermo-mechanical Fatigue Behavior of Cross-ply Ceramic Matrix Composite Under Tension-tension Loading PDF Author: Dana G. Allen
Publisher:
ISBN:
Category : Ceramic-matrix composites
Languages : en
Pages : 0

Get Book

Book Description


High Temperature Mechanical Behaviour of Ceramic Composites

High Temperature Mechanical Behaviour of Ceramic Composites PDF Author: Karl Jakus
Publisher: Elsevier
ISBN: 0080523889
Category : Technology & Engineering
Languages : en
Pages : 558

Get Book

Book Description
High Temperature Mechanical Behavior of Ceramic Composites provides an up-to-date comprehensive coverage of the mechanical behavior of ceramic matrix composites at elevated temperatures. Topics include both short-term behavior (strength, fracture toughness and R-curve behavior) and long-term behavior (creep, creep-fatigue, delayed failure and lifetime). Emphasis is on a review of fundamentals and on the mechanics and mechanisms underlying properties. This is the first time that complete information of elevated temperature behavior of ceramic composites has ever been compacted together in a single volume. Of particular importance is that each chapter, written by internationally recognized experts, includes a substantial review component enabling the new material to be put in proper perspective. Shanti Nair is Associate Professor at the Department of Mechanical Engineering at the University of Massachusetts at Amherst. Karl Jakus is Professor at the University of Massachusetts at Amherst.

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures

Time-Dependent Mechanical Behavior of Ceramic-Matrix Composites at Elevated Temperatures PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811532745
Category : Technology & Engineering
Languages : en
Pages : 373

Get Book

Book Description
This book investigates the time-dependent behavior of fiber-reinforced ceramic-matrix composites (CMCs) at elevated temperatures. The author combines the time-dependent damage mechanisms of interface and fiber oxidation and fracture with the micromechanical approach to establish the relationships between the first matrix cracking stress, matrix multiple cracking evolution, tensile strength, tensile stress-strain curves and tensile fatigue of fiber-reinforced CMCs and time. Then, using damage models of energy balance, the fracture mechanics approach, critical matrix strain energy criterion, Global Load Sharing criterion, and hysteresis loops he determines the first matrix cracking stress, interface debonded length, matrix cracking density, fibers failure probability, tensile strength, tensile stress-strain curves and fatigue hysteresis loops. Lastly, he predicts the time-dependent mechanical behavior of different fiber-reinforced CMCs, i.e., C/SiC and SiC/SiC, using the developed approaches, in order to reduce the failure risk during the operation of aero engines. The book is intended for undergraduate and graduate students who are interested in the mechanical behavior of CMCs, researchers investigating the damage evolution of CMCs at elevated temperatures, and designers responsible for hot-section CMC components in aero engines.

Introduction to Fatigue in Metals and Composites

Introduction to Fatigue in Metals and Composites PDF Author: R.L. Carlson
Publisher: Springer Science & Business Media
ISBN: 9780412572005
Category : Technology & Engineering
Languages : en
Pages : 302

Get Book

Book Description
An Introduction to Fatigue in Metals and Composites provides a balanced treatment of the phenomenon of fatigue in metals, nonmetals and composites with polymeric, metallic and ceramic matrices. The applicability of the safe life philosophy of design is examined for each of the materials. Attention is also focused on the stable crack growth phase of fatigue and differences in the operative mechanisms for the various classes of materials are considered. The impacts of these differences on the development of damage tolerance strategies are examined. Among topics discussed are; variable amplitude loading with tensile and compressive overload; closure obstruction; bridging mechanisms; mixed mode states; small cracks; delamination mechanisms and environmental conditions. The arrangement and presentation of the topics are such that An Introduction to Fatigue in Metals and Composites can serve as a course text for mechanical, civil, aeronautical and astronautical engineering and material science courses as well as a reference for engineers who are concerned with fatigue testing and aircraft, automobile and engine design.

Fracture and Fatigue

Fracture and Fatigue PDF Author: Lawrence J. Broutman
Publisher: Elsevier
ISBN: 1483216713
Category : Technology & Engineering
Languages : en
Pages : 484

Get Book

Book Description
Composite Materials, Volume 5: Fracture and Fatigue covers the concepts, theories, and experiments on fracture and fatigue behavior of composite materials. The book discusses the fracture of particulate composites, including metal, polymer, and ceramic matrices; relates micromechanics effects to composite strength; and summarizes the various theories relating constituent properties and microstructure to fracture. The text also describes differing theories regarding the strength and fracture of composites; and the theory and experiment relating to time-dependent fracture covering both long-term as well as dynamic fracture. The fatigue of both polymer- and metal-matrix composites and the factors influencing the toughness of both brittle and ductile matrix composites are also considered. Design engineers, materials scientist, materials engineers, and metallurgists will find the book useful.