# Error-Correcting Linear Codes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. **Download Error-Correcting Linear Codes PDF full book**. Access full book title **Error-Correcting Linear Codes** by Anton Betten. Download full books in PDF and EPUB format.
**Author**: Anton Betten

**Publisher:** Springer Science & Business Media

**ISBN:** 3540317031

**Category : **Mathematics

**Languages : **en

**Pages : **798

**Get Book**

**Book Description**
This text offers an introduction to error-correcting linear codes for researchers and graduate students in mathematics, computer science and engineering. The book differs from other standard texts in its emphasis on the classification of codes by means of isometry classes. The relevant algebraic are developed rigorously. Cyclic codes are discussed in great detail. In the last four chapters these isometry classes are enumerated, and representatives are constructed algorithmically.

**Author**: Anton Betten

**Publisher:** Springer Science & Business Media

**ISBN:** 3540317031

**Category : **Mathematics

**Languages : **en

**Pages : **798

**Get Book**

**Book Description**
This text offers an introduction to error-correcting linear codes for researchers and graduate students in mathematics, computer science and engineering. The book differs from other standard texts in its emphasis on the classification of codes by means of isometry classes. The relevant algebraic are developed rigorously. Cyclic codes are discussed in great detail. In the last four chapters these isometry classes are enumerated, and representatives are constructed algorithmically.

**Author**: D J. Baylis

**Publisher:** Routledge

**ISBN:** 1351449834

**Category : **Mathematics

**Languages : **en

**Pages : **113

**Get Book**

**Book Description**
Assuming little previous mathematical knowledge, Error Correcting Codes provides a sound introduction to key areas of the subject. Topics have been chosen for their importance and practical significance, which Baylis demonstrates in a rigorous but gentle mathematical style.Coverage includes optimal codes; linear and non-linear codes; general techniques of decoding errors and erasures; error detection; syndrome decoding, and much more. Error Correcting Codes contains not only straight maths, but also exercises on more investigational problem solving. Chapters on number theory and polynomial algebra are included to support linear codes and cyclic codes, and an extensive reminder of relevant topics in linear algebra is given. Exercises are placed within the main body of the text to encourage active participation by the reader, with comprehensive solutions provided.Error Correcting Codes will appeal to undergraduate students in pure and applied mathematical fields, software engineering, communications engineering, computer science and information technology, and to organizations with substantial research and development in those areas.

**Author**: Xuan Guang

**Publisher:** Springer Science & Business Media

**ISBN:** 1493905880

**Category : **Computers

**Languages : **en

**Pages : **107

**Get Book**

**Book Description**
There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences similar to algebraic coding, and also briefly discuss the main results following the other approach, that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances and weights are defined in order to characterize the discrepancy of these two vectors and to measure the seriousness of errors. Similar to classical error-correcting codes, the authors also apply the minimum distance decoding principle to LNEC codes at each sink node, but use distinct distances. For this decoding principle, it is shown that the minimum distance of a LNEC code at each sink node can fully characterize its error-detecting, error-correcting and erasure-error-correcting capabilities with respect to the sink node. In addition, some important and useful coding bounds in classical coding theory are generalized to linear network error correction coding, including the Hamming bound, the Gilbert-Varshamov bound and the Singleton bound. Several constructive algorithms of LNEC codes are presented, particularly for LNEC MDS codes, along with an analysis of their performance. Random linear network error correction coding is feasible for noncoherent networks with errors. Its performance is investigated by estimating upper bounds on some failure probabilities by analyzing the information transmission and error correction. Finally, the basic theory of subspace codes is introduced including the encoding and decoding principle as well as the channel model, the bounds on subspace codes, code construction and decoding algorithms.

**Author**: William Wesley Peterson

**Publisher:** MIT Press

**ISBN:** 9780262160391

**Category : **Error-correcting codes (Information theory).

**Languages : **en

**Pages : **584

**Get Book**

**Book Description**
The coding problem; Introduction to algebra; Linear codes; Error correction capabilities of linear codes; Important linear block codes; Polynomial rings and galois fields; Linear switching circuits; Cyclic codes; Bose-chaudhuri-hocquenghem codes; Arithmetic codes.

**Author**: Florence Jessie MacWilliams

**Publisher:** Elsevier

**ISBN:** 0444850104

**Category : **Electronic books

**Languages : **en

**Pages : **788

**Get Book**

**Book Description**

**Author**: W. Cary Huffman

**Publisher:** Cambridge University Press

**ISBN:** 1139439502

**Category : **Technology & Engineering

**Languages : **en

**Pages : **
**Get Book**

**Book Description**
Fundamentals of Error Correcting Codes is an in-depth introduction to coding theory from both an engineering and mathematical viewpoint. As well as covering classical topics, there is much coverage of techniques which could only be found in specialist journals and book publications. Numerous exercises and examples and an accessible writing style make this a lucid and effective introduction to coding theory for advanced undergraduate and graduate students, researchers and engineers, whether approaching the subject from a mathematical, engineering or computer science background.

**Author**: Grigorii Kabatiansky

**Publisher:** John Wiley & Sons

**ISBN:** 0470867566

**Category : **Technology & Engineering

**Languages : **en

**Pages : **288

**Get Book**

**Book Description**
Error correcting coding is often analyzed in terms of its application to the separate levels within the data network in isolation from each other. In this fresh approach, the authors consider the data network as a superchannel (a multi-layered entity) which allows error correcting coding to be evaluated as it is applied to a number of network layers as a whole. By exposing the problems of applying error correcting coding in data networks, and by discussing coding theory and its applications, this original technique shows how to correct errors in the network through joint coding at different network layers. Discusses the problem of reconciling coding applied to different layers using a superchannel approach Includes thorough coverage of all the key codes: linear block codes, Hamming, BCH and Reed-Solomon codes, LDPC codes decoding, as well as convolutional, turbo and iterative coding Considers new areas of application of error correcting codes such as transport coding, code-based cryptosystems and coding for image compression Demonstrates how to use error correcting coding to control such important data characteristics as mean message delay Provides theoretical explanations backed up by numerous real-world examples and practical recommendations Features a companion website containing additional research results including new constructions of LDPC codes, joint error-control coding and synchronization, Reed-Muller codes and their list decoding By progressing from theory through to practical problem solving, this resource contains invaluable advice for researchers, postgraduate students, engineers and computer scientists interested in data communications and applications of coding theory.

**Author**: J. H. van Lint

**Publisher:** Springer

**ISBN:** 3540366571

**Category : **Mathematics

**Languages : **en

**Pages : **142

**Get Book**

**Book Description**
These lecture notes are the contents of a two-term course given by me during the 1970-1971 academic year as Morgan Ward visiting professor at the California Institute of Technology. The students who took the course were mathematics seniors and graduate students. Therefore a thorough knowledge of algebra. (a. o. linear algebra, theory of finite fields, characters of abelian groups) and also probability theory were assumed. After introducing coding theory and linear codes these notes concern topics mostly from algebraic coding theory. The practical side of the subject, e. g. circuitry, is not included. Some topics which one would like to include 1n a course for students of mathematics such as bounds on the information rate of codes and many connections between combinatorial mathematics and coding theory could not be treated due to lack of time. For an extension of the course into a third term these two topics would have been chosen. Although the material for this course came from many sources there are three which contributed heavily and which were used as suggested reading material for the students. These are W. W. Peterson's Error-Correcting Codes «(15]), E. R. Berlekamp's Algebraic Coding Theory «(5]) and several of the AFCRL-reports by E. F. Assmus, H. F. Mattson and R. Turyn ([2], (3), [4] a. o. ). For several fruitful discussions I would like to thank R. J. McEliece.

**Author**: Florence Jessie MacWilliams

**Publisher:** North Holland

**ISBN:**
**Category : **Mathematics

**Languages : **en

**Pages : **794

**Get Book**

**Book Description**

**Author**: Robert H. Morelos-Zaragoza

**Publisher:** John Wiley & Sons

**ISBN:** 0470035692

**Category : **Technology & Engineering

**Languages : **en

**Pages : **278

**Get Book**

**Book Description**
Building on the success of the first edition, which offered a practical introductory approach to the techniques of error concealment, this book, now fully revised and updated, provides a comprehensive treatment of the subject and includes a wealth of additional features. The Art of Error Correcting Coding, Second Edition explores intermediate and advanced level concepts as well as those which will appeal to the novice. All key topics are discussed, including Reed-Solomon codes, Viterbi decoding, soft-output decoding algorithms, MAP, log-MAP and MAX-log-MAP. Reliability-based algorithms GMD and Chase are examined, as are turbo codes, both serially and parallel concatenated, as well as low-density parity-check (LDPC) codes and their iterative decoders. Features additional problems at the end of each chapter and an instructor’s solutions manual Updated companion website offers new C/C ++programs and MATLAB scripts, to help with the understanding and implementation of basic ECC techniques Easy to follow examples illustrate the fundamental concepts of error correcting codes Basic analysis tools are provided throughout to help in the assessment of the error performance block and convolutional codes of a particular error correcting coding (ECC) scheme for a selection of the basic channel models This edition provides an essential resource to engineers, computer scientists and graduate students alike for understanding and applying ECC techniques in the transmission and storage of digital information.