Electromagnetic and Photonic Simulation for the Beginner

Electromagnetic and Photonic Simulation for the Beginner PDF Author: RAYMOND C. RUMPF
Publisher: Artech House Publishers
ISBN: 9781630819262
Category :
Languages : en
Pages : 350

Get Book

Book Description
This forward-thinking book presents the finite-difference frequency-domain (FDFD) method. FDFD is the frequency-domain relative of the finite-difference time-domain (FDTD) method used for simulating electromagnetic and photonic devices. Special techniques in MATLAB(R) are presented that will allow readers to write their own FDFD programs, as well as review key concepts in electromagnetics. Guided modes in waveguides, photonic band diagrams, and isofrequency contours of periodic structures are explored. Readers learn how to simulate waves through diffraction gratings, beams through photonic crystals, and optical integrated circuits, as well as how to modify FDFD to easily perform parameter sweeps, such as plotting reflection and transmission through a device as a function of frequency. The book includes all of the required MATLAB codes and a detailed explanation of the programs to explain how to simulate devices in the real world.

Electromagnetic and Photonic Simulation for the Beginner

Electromagnetic and Photonic Simulation for the Beginner PDF Author: RAYMOND C. RUMPF
Publisher: Artech House Publishers
ISBN: 9781630819262
Category :
Languages : en
Pages : 350

Get Book

Book Description
This forward-thinking book presents the finite-difference frequency-domain (FDFD) method. FDFD is the frequency-domain relative of the finite-difference time-domain (FDTD) method used for simulating electromagnetic and photonic devices. Special techniques in MATLAB(R) are presented that will allow readers to write their own FDFD programs, as well as review key concepts in electromagnetics. Guided modes in waveguides, photonic band diagrams, and isofrequency contours of periodic structures are explored. Readers learn how to simulate waves through diffraction gratings, beams through photonic crystals, and optical integrated circuits, as well as how to modify FDFD to easily perform parameter sweeps, such as plotting reflection and transmission through a device as a function of frequency. The book includes all of the required MATLAB codes and a detailed explanation of the programs to explain how to simulate devices in the real world.

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® PDF Author: Raymond C. Rumpf
Publisher: Artech House
ISBN: 1630819271
Category : Technology & Engineering
Languages : en
Pages : 350

Get Book

Book Description
This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics PDF Author: Stephen D. Gedney
Publisher: Morgan & Claypool Publishers
ISBN: 160845522X
Category : Computers
Languages : en
Pages : 251

Get Book

Book Description
Provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations - the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science.

Plasmonic Optical Fiber Biosensors

Plasmonic Optical Fiber Biosensors PDF Author: Christophe Caucheteur
Publisher: Artech House
ISBN: 1630819727
Category : Technology & Engineering
Languages : en
Pages : 313

Get Book

Book Description
This book provides a thorough vision of the current trends in plasmonic optical fiber biochemical sensing. It gathers the most recent technological information and shows the maturity reached by the different subsequent technologies. Demonstrating roadmaps for the design process and implementation of plasmonic optical fiber biochemical sensors, the book bridges the gap between theory and application. With this philosophy, understanding key physical properties is of paramount importance for the efficient design of sensing platforms that will meet target specifications. You will learn about the role of the fiber configuration and the functional coating on the properties of the resulting optrodes. You will also get an encompassing overview on all optical fiber configurations used for plasmonic sensing thus far, especially on the progress made over the last decade and rendering the technology compatible for use in real conditions. The book presents both fundamental aspects and advanced applications while focusing on recent and emerging fields of research, such as the use of tilted fiber Bragg gratings, the integration of sensors in situ, the use of smart interrogation techniques, and much more. This is a unique reference for both beginners and experts in optical fiber-based sensors, especially for industrial engineers working in biophotonics and biochemical sensing, as it presents state-of-the-art design procedures and sensing features. The book’s theoretical background combined with recent advances of plasmonic-based optical fiber technologies also make it highly beneficial for all researchers, academics, and students specialized or interested in this flourishing and promising discipline.

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB® Simulations

The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB® Simulations PDF Author: Atef Z. Elsherbeni
Publisher: IET
ISBN: 1613531753
Category : Science
Languages : en
Pages : 559

Get Book

Book Description
This is one of the best books on computational electromagnetics both for graduate students focusing on electromagnetics problems and for practicing engineering professionals in industry and government. It is designed as an advanced textbook and self-study guide to the FDTD method of solving EM problems and simulations. This latest edition has been expanded to include 5 entirely new chapters on advanced topics in the mainstream of FDTD practice. In addition to advanced techniques it also includes applications and examples, and some 'tricks and traps' of using MATLAB to achieve them. Compared to the previous version the second edition is more complete and is a good reference for someone who is performing FDTD research. This book is part of the ACES Series on Computational Electromagnetics and Engineering. Supplementary material can be found at the IET's ebook page Supplementary materials for professors are available upon request via email to [email protected].

The Finite-difference Time-domain for Electromagnetics

The Finite-difference Time-domain for Electromagnetics PDF Author: Atef Z. Elsherbeni
Publisher:
ISBN: 9781523102327
Category : Antenna radiation patterns
Languages : en
Pages :

Get Book

Book Description
This book introduces the powerful Finite-Difference Time-Domain method to students and interested researchers and readers. An effective introduction is accomplished using a step-by-step process that builds competence and confidence in developing complete working codes for the design and analysis of various antennas and microwave devices.

Raman Spectroscopy

Raman Spectroscopy PDF Author: Dheeraj Kumar Singh
Publisher: Springer Nature
ISBN: 9819717035
Category :
Languages : en
Pages : 388

Get Book

Book Description


Numerical Methods in Photonics

Numerical Methods in Photonics PDF Author: Andrei V. Lavrinenko
Publisher: CRC Press
ISBN: 1466563893
Category : Science
Languages : en
Pages : 362

Get Book

Book Description
Simulation and modeling using numerical methods is one of the key instruments in any scientific work. In the field of photonics, a wide range of numerical methods are used for studying both fundamental optics and applications such as design, development, and optimization of photonic components. Modeling is key for developing improved photonic devices and reducing development time and cost. Choosing the appropriate computational method for a photonics modeling problem requires a clear understanding of the pros and cons of the available numerical methods. Numerical Methods in Photonics presents six of the most frequently used methods: FDTD, FDFD, 1+1D nonlinear propagation, modal method, Green’s function, and FEM. After an introductory chapter outlining the basics of Maxwell’s equations, the book includes self-contained chapters that focus on each of the methods. Each method is accompanied by a review of the mathematical principles in which it is based, along with sample scripts, illustrative examples of characteristic problem solving, and exercises. MATLAB® is used throughout the text. This book provides a solid basis to practice writing your own codes. The theoretical formulation is complemented by sets of exercises, which allow you to grasp the essence of the modeling tools.

Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects

Double-Grid Finite-Difference Frequency-Domain (DG-FDFD) Method for Scattering from Chiral Objects PDF Author: Erdogan Alkan
Publisher: Morgan & Claypool Publishers
ISBN: 1627051457
Category : Mathematics
Languages : en
Pages : 131

Get Book

Book Description
This book presents the application of the overlapping grids approach to solve chiral material problems using the FDFD method. Due to the two grids being used in the technique, we will name this method as Double-Grid Finite Difference Frequency-Domain (DG-FDFD) method. As a result of this new approach the electric and magnetic field components are defined at every node in the computation space. Thus, there is no need to perform averaging during the calculations as in the aforementioned FDFD technique [16]. We formulate general 3D frequency-domain numerical methods based on double-grid (DG-FDFD) approach for general bianisotropic materials. The validity of the derived formulations for different scattering problems has been shown by comparing the obtained results to exact and other solutions obtained using different numerical methods.

The Finite-difference Time-domain Method for Electromagnetics with MATLAB Simulations

The Finite-difference Time-domain Method for Electromagnetics with MATLAB Simulations PDF Author: Atef Z. Elsherbeni
Publisher: Scitech Pub Incorporated
ISBN: 9781891121715
Category : Technology & Engineering
Languages : en
Pages : 425

Get Book

Book Description
Helping students to construct a program with sufficient functionality to solve some basic problems, this book presents the construction of equations accompanied by 3D illustrations. It also explains the transformation of the concepts into programming.