Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading PDF Author: Longbiao Li
Publisher:
ISBN: 9789811621420
Category :
Languages : en
Pages : 0

Get Book

Book Description
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCs subjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading PDF Author: Longbiao Li
Publisher:
ISBN: 9789811621420
Category :
Languages : en
Pages : 0

Get Book

Book Description
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCs subjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading

Damage and Fracture of Ceramic-Matrix Composites Under Stochastic Loading PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811621411
Category : Technology & Engineering
Languages : en
Pages : 205

Get Book

Book Description
This book presents the relationships between tensile damage and fracture, fatigue hysteresis loops, stress-rupture, fatigue life and fatigue limit stress, and stochastic loading stress. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 - 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. This book investigates damage and fracture of fiber-reinforced ceramic-matrix composites (CMCs) subjected to stochastic loading, including: (1) tensile damage and fracture of fiber-reinforced CMCs subjected to stochastic loading; (2) fatigue hysteresis loops of fiber-reinforced CMCs subjected to stochastic loading; (3) stress rupture of fiber-reinforced CMCs with stochastic loading at intermediate temperature; (4) fatigue life prediction of fiber-reinforced CMCs subjected to stochastic overloading stress at elevated temperature; and (5) fatigue limit stress prediction of fiber-reinforced CMCs with stochastic loading. This book helps the material scientists and engineering designers to understand and master the damage and fracture of ceramic-matrix composites under stochastic loading.

Ceramic Matrix Composites

Ceramic Matrix Composites PDF Author: Longbiao Li
Publisher: Elsevier
ISBN: 0323997074
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book

Book Description
Ceramic Matrix Composites: Lifetime and Strength Prediction Under Static and Stochastic Loading focuses on the strain response and lifetime prediction of fiber-reinforced ceramic-matrix composites under stress-rupture loading at intermediate temperatures. Typical damage mechanisms of matrix cracking, interface debonding and oxidation, and fiber’s oxidation and fracture are considered in the micromechanical analysis. Effects of composite’s constituent properties, peak stress, and testing temperature on the composite’s strain response and lifetime are also analyzed in detail. Finally, a comparison of constant and different stochastic stress spectrum on composite’s damage evolution and fracture is discussed. This book will be a practical guide for the material researcher and component designer needing to better understand the composite’s damage and fracture behavior under stress-rupture loading at intermediate temperatures. Contains detailed analysis of the stress-rupture behavior of fiber-reinforced ceramic-matrix composites Includes experimental data on stress-rupture behavior of different CMCs Presents micromechanical constituent models for characterizing damage and fracture behavior under stress-rupture loading Provides data on the physical properties of each constituent at various temperatures, along with the composite’s response

Nonlinear Behavior of Ceramic-Matrix Composites

Nonlinear Behavior of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Woodhead Publishing
ISBN: 0323858171
Category : Technology & Engineering
Languages : en
Pages : 252

Get Book

Book Description
Nonlinear Damage Behavior of Ceramic Matrix Composites help readers [researchers, material scientists and design engineers] gain greater understanding on the damage mechanisms inside CMCs so they can better design components used in aeronautics and astronautics. Key areas addressed in the book include: the nonlinear damage behavior of ceramic-matrix composites, including damage mechanisms and models, nonlinear damage behavior of ceramic-matrix composites under tensile and fatigue loading, strain-rate dependent, stochastic loading dependent, and time dependent nonlinear damage behavior, and the effect of pre-exposure and thermal fatigue on non-linear damage behavior of ceramic-matrix composites. Provides comprehensive coverage on damage mechanisms and models under tensile and cyclic fatigue loading which ultimately control nonlinear behavior Covers nonlinear damage analyses of CMC components and experimental observations of damage evolution Presents extensive knowledge on fracture mechanic principles used in the design of aerospace propulsion systems

High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites

High-Temperature Mechanical Hysteresis in Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: CRC Press
ISBN: 1000629694
Category : Technology & Engineering
Languages : en
Pages : 200

Get Book

Book Description
This book focuses on mechanical hysteresis behavior in different fiber-reinforced ceramic-matrix composites (CMCs), including 1D minicomposites, 1D unidirectional, 2D cross-ply, 2D plain-woven, 2.5D woven, and 3D needle-punched composites. Ceramic-matrix composites (CMCs) are considered to be the lightweight high-temperature materials for hot-section components in aeroengines with the most potential. To improve the reliability and safety of CMC components during operation, it is necessary to conduct damage and failure mechanism analysis, and to develop models to predict this damage as well as fracture over lifetime - mechanical hysteresis is a key damage behavior in fiber-reinforced CMCs. The appearance of hysteresis is due to a composite’s internal damage mechanisms and modes, such as, matrix cracking, interface debonding, and fiber failure. Micromechanical damage models and constitutive models are developed to predict mechanical hysteresis in different CMCs. Effects of a composite’s constituent properties, stress level, and the damage states of the mechanical hysteresis behavior of CMCs are also discussed. This book also covers damage mechanisms, damage models and micromechanical constitutive models for the mechanical hysteresis of CMCs. This book will be a great resource for students, scholars, material scientists and engineering designers who would like to understand and master the mechanical hysteresis behavior of fiber-reinforced CMCs.

Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures

Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix and Polymer Matrix Composite Structures PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781719449342
Category :
Languages : en
Pages : 44

Get Book

Book Description
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report. Nemeth, Noel N. and Bednarcyk, Brett A. and Pineda, Evan J. and Walton, Owen J. and Arnold, Steven M. Glenn Research Center STOCHASTIC PROCESSES; MICROCRACKS; SIMULATION; CERAMIC MATRIX COMPOSITES; POLYMER MATRIX COMPOSITES; FINITE ELEMENT METHOD; MICROMECHANICS; SOFTWARE DEVELOPMENT TOOLS; SOFTWARE ENGINEERING; DAMAGE; BRITTLE MATERIALS; COMPOSITE STRUCTURES; CRACK INITIATION; CRACK PROPAGATION; FRACTURE MECHANICS; PROBABILITY THEORY; STRESS-STRAIN RELATIONSHIPS; STRUCTURAL ANALYSIS

Matrix Cracking in Ceramic-Matrix Composites

Matrix Cracking in Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811902321
Category : Technology & Engineering
Languages : en
Pages : 170

Get Book

Book Description
This book focuses on the matrix cracking behavior in ceramic–matrix composites (CMCs), including first matrix cracking behavior, matrix cracking evolution behavior, matrix crack opening and closure behavior considering temperature and oxidation. The micro-damage mechanisms are analyzed, and the micromechanical damage models are developed to characterize the cracking behavior. Experimental matrix cracking behavior of different CMCs at room and elevated temperatures is predicted. The book can help the material scientists and engineering designers to better understand the cracking behavior in CMCs.

Damage, Fracture, and Fatigue of Ceramic-Matrix Composites

Damage, Fracture, and Fatigue of Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Springer
ISBN: 9811317836
Category : Technology & Engineering
Languages : en
Pages : 244

Get Book

Book Description
This book focuses on the damage, fracture and fatigue of ceramic-matrix composites. It investigates tensile damage and fracture, fatigue hysteresis, and the properties of interfaces subjected to cyclic fatigue loading. Further, it predicts fatigue life at room and elevated temperatures using newly developed damage models and methods, and it analyzes and compares damage, fracture and fatigue behavior of different fiber performs: unidirectional, cross-ply, 2D and 2.5D woven. The developed models and methods can be used to predict the damage and lifetime of ceramic-matrix composites during applications on hot section components.Ceramic-matrix composites (CMCs) are high-temperature structural materials with the significant advantages of high specific strength, high specific modulus, high temperature resistance and good thermal stability, which play a crucial role in the development of high thrust weight ratio aero engines. The critical nature of the application of these advanced materials makes comprehensive characterization a necessity, and as such this book provides designers with essential information pertaining not only to the strength of the materials, but also to their fatigue and damage characteristics.

Hysteresis of Composites

Hysteresis of Composites PDF Author: Li Longbiao
Publisher: BoD – Books on Demand
ISBN: 1789846196
Category : Technology & Engineering
Languages : en
Pages : 178

Get Book

Book Description
This book introduces the hysteresis and damping of, and damage to, composites. It analyzes the following areas: damage mechanisms affecting the hysteresis of composites, mechanical hysteresis of ceramic-matrix composites, hysteresis behavior of fiber-reinforced ceramic-matrix composites (CMCs), relationship between the internal damage and hysteresis loops of CMCs, and mechanical hysteresis loops and the fiber/matrix interface frictional coefficient of SiC/CAS and C/SiC composites. A damping study on aluminum-multiwalled carbon nanotube-based nanocomposite materials is discussed to increase the damping property for applications like engine heads, pistons, cylinder blocks, and other aerospace components. The effect of ceramic/graphite addition to the dry sliding wear behavior of copper-based hybrid composites has been assessed at three different normal loads of 9.81, 19.62, and 29.34 N. The authors hope this book will help material scientists and engineering designers to understand and master the hysteresis of composites.

Vibration Behavior in Ceramic-Matrix Composites

Vibration Behavior in Ceramic-Matrix Composites PDF Author: Longbiao Li
Publisher: Springer Nature
ISBN: 9811978387
Category : Technology & Engineering
Languages : en
Pages : 134

Get Book

Book Description
This book focuses on the vibration behavior of ceramic-matrix composites (CMCs), including (1) vibration natural frequency of intact and damaged CMCs; (2) vibration damping of CMCs considering fibers debonding and fracture; (3) temperature-dependent vibration damping of CMCs; (4) time-dependent vibration damping of CMCs; and (5) cyclic-dependent vibration damping of CMCs. Ceramic-matrix composites (CMCs) possess low material density (i.e., only 1/4 or 1/3 of high-temperature alloy) and high-temperature resistance, which can reduce cooling air and improve structure efficiency. Understanding the failure mechanisms and internal damage evolution represents an important step to ensure reliability and safety of CMCs. Relationships between microstructure, damage mechanisms, vibration natural frequency, and vibration damping of CMCs are established. This book helps the material scientists and engineering designers to understand and master the vibration behavior of CMCs at room and elevated temperatures.