Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells PDF Author: Kentaro Ito
Publisher: John Wiley & Sons
ISBN: 111843787X
Category : Technology & Engineering
Languages : en
Pages : 449

Get Book

Book Description
Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells PDF Author: Kentaro Ito
Publisher: John Wiley & Sons
ISBN: 111843787X
Category : Technology & Engineering
Languages : en
Pages : 449

Get Book

Book Description
Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and toxicity issues. The device performance of CZTS-based thin film solar cells has been steadily improving over the past 20 years, and they have now reached near commercial efficiency levels (10%). These achievements prove that CZTS-based solar cells have the potential to be used for large-scale deployment of photovoltaics. With contributions from leading researchers from academia and industry, many of these authors have contributed to the improvement of its efficiency, and have rich experience in preparing a variety of semiconducting thin films for solar cells.

Copper Zinc Tin Sulfide Thin Films for Photovoltaics

Copper Zinc Tin Sulfide Thin Films for Photovoltaics PDF Author: Jonathan J. Scragg
Publisher: Springer Science & Business Media
ISBN: 9783642229190
Category : Science
Languages : en
Pages : 204

Get Book

Book Description
Jonathan Scragg documents his work on a very promising material suitable for use in solar cells. Copper Zinc Tin Sulfide (CZTS) is a low cost, earth-abundant material suitable for large scale deployment in photovoltaics. Jonathan pioneered and optimized a low cost route to this material involving electroplating of the three metals concerned, followed by rapid thermal processing (RTP) in sulfur vapour. His beautifully detailed RTP studies – combined with techniques such as XRD, EDX and Raman – reveal the complex relationships between composition, processing and photovoltaic performance. This exceptional thesis contributes to the development of clean, sustainable and alternative sources of energy

Semiconductor Materials for Solar Photovoltaic Cells

Semiconductor Materials for Solar Photovoltaic Cells PDF Author: M. Parans Paranthaman
Publisher: Springer
ISBN: 3319203312
Category : Technology & Engineering
Languages : en
Pages : 279

Get Book

Book Description
This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing. Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost. Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce costs, with particular focus on how to reduce the gap between laboratory scale efficiency and commercial module efficiency. This book will aid materials scientists and engineers in identifying research priorities to fulfill energy needs, and will also enable researchers to understand novel semiconductor materials that are emerging in the solar market. This integrated approach also gives science and engineering students a sense of the excitement and relevance of materials science in the development of novel semiconductor materials. · Provides a comprehensive introduction to solar PV cell materials · Reviews current and future status of solar cells with respect to cost and efficiency · Covers the full range of solar cell materials, from silicon and thin films to dye sensitized and organic solar cells · Offers an in-depth account of the semiconductor material strategies and directions for further research · Features detailed tables on the world leaders in efficiency demonstrations · Edited by scientists with experience in both research and industry

Cu(In1-xGax)Se2 Based Thin Film Solar Cells

Cu(In1-xGax)Se2 Based Thin Film Solar Cells PDF Author: Subba Ramaiah Kodigala
Publisher: Academic Press
ISBN: 9780080920320
Category : Science
Languages : en
Pages : 700

Get Book

Book Description
Cu(In1-xGax)Se2 Based Thin Film Solar Cells provides valuable contents about the fabrication and characterization of chalcopyrite Cu(In1-xGax)Se2 based thin film solar cells and modules. The growth of chalcopyrite Cu(In1-xGax)(S1-ySey)2 absorbers, buffers, window layers, antireflection coatings, and finally metallic grids, which are the sole components of solar cells, is clearly illustrated. The absorber, which contains multiple elements, segregates secondary phases if the growth conditions are not well optimized i.e., the main drawback in the fabrication of solar cells. More importantly the solutions for the growth of thin films are given in detail. The properties of all the individual layers and single crystals including solar cells analyzed by different characterization techniques such as SEM, AFM, XPS, AES, TEM, XRD, optical, photoluminescence, and Raman spectroscopy are explicitly demonstrated. The electrical analyses such as conductivities, Hall mobilities, deep level transient spectroscopy measurements etc., provide a broad picture to understand thin films or single crystals and their solar cells. The book clearly explains the working principle of energy conversion from solar to electrical with basic sciences for the chalcopyrite based thin film solar cells. Also, it demonstrates important criteria on how to enhance efficiency of the solar cells and modules. The effect of environmental factors such as temperature, humidity, aging etc., on the devices is mentioned by citing several examples. Illustrates a number of growth techniques to prepare thin film layers for solar cells Discusses characterization techniques such as XRD, TEM, XPS, AFM, SEM, PL, CL, Optical measurements, and Electrical measurements Includes I-V, C-V measurements illustrations Provides analysis of solar cell efficiency Presents current trends in thin film solar cells research and marketing

Introducing CTS (Copper-Tin-Sulphide) as a Solar Cell by Using Solar Cell Capacitance Simulator (SCAPS)

Introducing CTS (Copper-Tin-Sulphide) as a Solar Cell by Using Solar Cell Capacitance Simulator (SCAPS) PDF Author: Iraj Sadegh Amiri
Publisher: Springer
ISBN: 303017395X
Category : Technology & Engineering
Languages : en
Pages : 67

Get Book

Book Description
This book discusses the enhancement of efficiency in currently used solar cells. The authors have characterized different structures of the solar cell system to optimize system parameters, particularly the performance of the Copper-Tin-Sulphide solar cell using Solar Cell Capacitance Simulator (SCAPS). This research can help scientist to overcome the current limitations and build up new designs of the system with higher efficiency and greater functionality. The authors have investigated the corresponding samples from various viewpoints, including structural (crystallinity, composition and surface morphology), optical (UV–vis–near-IR transmittance/reflectance spectra) and electrical resistivity properties. Describes investigations on Cu2SnS3 solar cells and prospective low cost absorber layer of thin film solar cells; Discusses the potential device structure of Copper-Tin-Sulphide based on thin film technologies; Explains solar cell structure optimization to perform a higher conversion efficiency of Copper-Tin-Sulphide.

Thin Film Solar Cells From Earth Abundant Materials

Thin Film Solar Cells From Earth Abundant Materials PDF Author: Subba Ramaiah Kodigala
Publisher: Newnes
ISBN: 0123971829
Category : Technology & Engineering
Languages : en
Pages : 190

Get Book

Book Description
The fundamental concept of the book is to explain how to make thin film solar cells from the abundant solar energy materials by low cost. The proper and optimized growth conditions are very essential while sandwiching thin films to make solar cell otherwise secondary phases play a role to undermine the working function of solar cells. The book illustrates growth and characterization of Cu2ZnSn(S1-xSex)4 thin film absorbers and their solar cells. The fabrication process of absorber layers by either vacuum or non-vacuum process is readily elaborated in the book, which helps for further development of cells. The characterization analyses such as XPS, XRD, SEM, AFM etc., lead to tailor the physical properties of the absorber layers to fit well for the solar cells. The role of secondary phases such as ZnS, Cu2-xS,SnS etc., which are determined by XPS, XRD or Raman, in the absorber layers is promptly discussed. The optical spectroscopy analysis, which finds band gap, optical constants of the films, is mentioned in the book. The electrical properties of the absorbers deal the influence of substrates, growth temperature, impurities, secondary phases etc. The low temperature I-V and C-V measurements of Cu2ZnSn(S1-xSex)4 thin film solar cells are clearly described. The solar cell parameters such as efficiency, fill factor, series resistance, parallel resistance provide handful information to understand the mechanism of physics of thin film solar cells in the book. The band structure, which supports to adjust interface states at the p-n junction of the solar cells is given. On the other hand the role of window layers with the solar cells is discussed. The simulation of theoretical efficiency of Cu2ZnSn(S1-xSex)4 thin film solar cells explains how much efficiency can be experimentally extracted from the cells. One of the first books exploring how to conduct research on thin film solar cells, including reducing costs Detailed instructions on conducting research

Third Generation Photovoltaic Technology

Third Generation Photovoltaic Technology PDF Author: Alagarsamy Pandikumar
Publisher: Materials Research Forum LLC
ISBN: 1644903024
Category : Technology & Engineering
Languages : en
Pages : 173

Get Book

Book Description
Third-generation solar cells (SCs) are built on inorganic nanoparticles, hybrids, or semiconducting organic macromolecules. This book focuses on dye-sensitized solar cells, polymer/organic solar cells, copper/zinc/tin sulfide thin film cells, quantum dot solar cells and perovskite-based solar cells. Specific topics covered include device architecture, interface engineering, characterization, and fabrication techniques such as spin coating, blade coating, slot-die coating, dip coating, meniscus coating, spray coating, ink-jet printing, screen printing and electro deposition. Keywords: Fullerene-Containing Polymers, Light-Sensitive Dye, Organic Solar Cells, Perovskite Film, Quantum Dots, Thin Film Solar Cells.

Shorting Path Mode of Degradation in Copper Sulfide - Cadmium Sulfide Thin-film Solar Cells

Shorting Path Mode of Degradation in Copper Sulfide - Cadmium Sulfide Thin-film Solar Cells PDF Author:
Publisher:
ISBN:
Category : Cadmium sulfide photoconductive cells
Languages : en
Pages : 36

Get Book

Book Description


1st International Conference on Advances in Science, Engineering and Robotics Technology 2019 (ICASERT 2019)

1st International Conference on Advances in Science, Engineering and Robotics Technology 2019 (ICASERT 2019) PDF Author:
Publisher:
ISBN: 9781728134451
Category :
Languages : en
Pages :

Get Book

Book Description


Thin Film Solar Cells

Thin Film Solar Cells PDF Author: Jef Poortmans
Publisher: John Wiley & Sons
ISBN: 0470091266
Category : Science
Languages : en
Pages : 504

Get Book

Book Description
Thin-film solar cells are either emerging or about to emerge from the research laboratory to become commercially available devices finding practical various applications. Currently no textbook outlining the basic theoretical background, methods of fabrication and applications currently exist. Thus, this book aims to present for the first time an in-depth overview of this topic covering a broad range of thin-film solar cell technologies including both organic and inorganic materials, presented in a systematic fashion, by the scientific leaders in the respective domains. It covers a broad range of related topics, from physical principles to design, fabrication, characterization, and applications of novel photovoltaic devices.