Computer Architecture Techniques for Power-Efficiency

Computer Architecture Techniques for Power-Efficiency PDF Author: Stefanos Kaxiras
Publisher: Springer Nature
ISBN: 3031017218
Category : Technology & Engineering
Languages : en
Pages : 207

Get Book

Book Description
In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and a slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics. Table of Contents: Introduction / Modeling, Simulation, and Measurement / Using Voltage and Frequency Adjustments to Manage Dynamic Power / Optimizing Capacitance and Switching Activity to Reduce Dynamic Power / Managing Static (Leakage) Power / Conclusions

Computer Architecture Techniques for Power-Efficiency

Computer Architecture Techniques for Power-Efficiency PDF Author: Stefanos Kaxiras
Publisher: Springer Nature
ISBN: 3031017218
Category : Technology & Engineering
Languages : en
Pages : 207

Get Book

Book Description
In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and a slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics. Table of Contents: Introduction / Modeling, Simulation, and Measurement / Using Voltage and Frequency Adjustments to Manage Dynamic Power / Optimizing Capacitance and Switching Activity to Reduce Dynamic Power / Managing Static (Leakage) Power / Conclusions

Computer Architecture Techniques for Power-efficiency

Computer Architecture Techniques for Power-efficiency PDF Author: Stefanos Kaxiras
Publisher: Morgan & Claypool Publishers
ISBN: 1598292080
Category : Computers
Languages : en
Pages : 220

Get Book

Book Description
In the last few years, power dissipation has become an important design constraint, on par with performance, in the design of new computer systems. Whereas in the past, the primary job of the computer architect was to translate improvements in operating frequency and transistor count into performance, now power efficiency must be taken into account at every step of the design process. While for some time, architects have been successful in delivering 40% to 50% annual improvement in processor performance, costs that were previously brushed aside eventually caught up. The most critical of these costs is the inexorable increase in power dissipation and power density in processors. Power dissipation issues have catalyzed new topic areas in computer architecture, resulting in a substantial body of work on more power-efficient architectures. Power dissipation coupled with diminishing performance gains, was also the main cause for the switch from single-core to multi-core architectures and a slowdown in frequency increase. This book aims to document some of the most important architectural techniques that were invented, proposed, and applied to reduce both dynamic power and static power dissipation in processors and memory hierarchies. A significant number of techniques have been proposed for a wide range of situations and this book synthesizes those techniques by focusing on their common characteristics.

Power-Efficient Computer Architectures

Power-Efficient Computer Architectures PDF Author: Magnus Själander
Publisher: Springer Nature
ISBN: 3031017455
Category : Technology & Engineering
Languages : en
Pages : 88

Get Book

Book Description
As Moore's Law and Dennard scaling trends have slowed, the challenges of building high-performance computer architectures while maintaining acceptable power efficiency levels have heightened. Over the past ten years, architecture techniques for power efficiency have shifted from primarily focusing on module-level efficiencies, toward more holistic design styles based on parallelism and heterogeneity. This work highlights and synthesizes recent techniques and trends in power-efficient computer architecture. Table of Contents: Introduction / Voltage and Frequency Management / Heterogeneity and Specialization / Communication and Memory Systems / Conclusions / Bibliography / Authors' Biographies

Energy Efficient High Performance Processors

Energy Efficient High Performance Processors PDF Author: Jawad Haj-Yahya
Publisher: Springer
ISBN: 9811085544
Category : Technology & Engineering
Languages : en
Pages : 165

Get Book

Book Description
This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modem processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.

System-Level Design Techniques for Energy-Efficient Embedded Systems

System-Level Design Techniques for Energy-Efficient Embedded Systems PDF Author: Marcus T. Schmitz
Publisher: Springer
ISBN: 0306487365
Category : Computers
Languages : en
Pages : 194

Get Book

Book Description
System-Level Design Techniques for Energy-Efficient Embedded Systems addresses the development and validation of co-synthesis techniques that allow an effective design of embedded systems with low energy dissipation. The book provides an overview of a system-level co-design flow, illustrating through examples how system performance is influenced at various steps of the flow including allocation, mapping, and scheduling. The book places special emphasis upon system-level co-synthesis techniques for architectures that contain voltage scalable processors, which can dynamically trade off between computational performance and power consumption. Throughout the book, the introduced co-synthesis techniques, which target both single-mode systems and emerging multi-mode applications, are applied to numerous benchmarks and real-life examples including a realistic smart phone.

Fault Tolerant Computer Architecture

Fault Tolerant Computer Architecture PDF Author: Daniel Sorin
Publisher: Springer Nature
ISBN: 3031017234
Category : Technology & Engineering
Languages : en
Pages : 103

Get Book

Book Description
For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes of this book are to explore the key ideas in fault-tolerant computer architecture and to present the current state-of-the-art - over approximately the past 10 years - in academia and industry. Table of Contents: Introduction / Error Detection / Error Recovery / Diagnosis / Self-Repair / The Future

Design of Energy-Efficient Application-Specific Instruction Set Processors

Design of Energy-Efficient Application-Specific Instruction Set Processors PDF Author: Tilman Glökler
Publisher: Springer Science & Business Media
ISBN: 1402025408
Category : Technology & Engineering
Languages : en
Pages : 234

Get Book

Book Description
After a brief introduction to low-power VLSI design, the design space of ASIP instruction set architectures (ISAs) is introduced with a special focus on important features for digital signal processing. Based on the degrees of freedom offered by this design space, a consistent ASIP design flow is proposed: this design flow starts with a given application and uses incremental optimization of the ASIP hardware, of ASIP coprocessors and of the ASIP software by using a top-down approach and by applying application-specific modifications on all levels of design hierarchy. A broad range of real-world signal processing applications serves as vehicle to illustrate each design decision and provides a hands-on approach to ASIP design. Finally, two complete case studies demonstrate the feasibility and the efficiency of the proposed methodology and quantitatively evaluate the benefits of ASIPs in an industrial context.

Design Technologies for Green and Sustainable Computing Systems

Design Technologies for Green and Sustainable Computing Systems PDF Author: Partha Pratim Pande
Publisher: Springer Science & Business Media
ISBN: 1461449758
Category : Technology & Engineering
Languages : en
Pages : 239

Get Book

Book Description
This book provides a comprehensive guide to the design of sustainable and green computing systems (GSC). Coverage includes important breakthroughs in various aspects of GSC, including multi-core architectures, interconnection technology, data centers, high performance computing (HPC), and sensor networks. The authors address the challenges of power efficiency and sustainability in various contexts, including system design, computer architecture, programming languages, compilers and networking.

Computer Architecture Performance Evaluation Methods

Computer Architecture Performance Evaluation Methods PDF Author: Lieven Eeckhout
Publisher: Springer Nature
ISBN: 3031017277
Category : Technology & Engineering
Languages : en
Pages : 132

Get Book

Book Description
Performance evaluation is at the foundation of computer architecture research and development. Contemporary microprocessors are so complex that architects cannot design systems based on intuition and simple models only. Adequate performance evaluation methods are absolutely crucial to steer the research and development process in the right direction. However, rigorous performance evaluation is non-trivial as there are multiple aspects to performance evaluation, such as picking workloads, selecting an appropriate modeling or simulation approach, running the model and interpreting the results using meaningful metrics. Each of these aspects is equally important and a performance evaluation method that lacks rigor in any of these crucial aspects may lead to inaccurate performance data and may drive research and development in a wrong direction. The goal of this book is to present an overview of the current state-of-the-art in computer architecture performance evaluation, with a special emphasis on methods for exploring processor architectures. The book focuses on fundamental concepts and ideas for obtaining accurate performance data. The book covers various topics in performance evaluation, ranging from performance metrics, to workload selection, to various modeling approaches including mechanistic and empirical modeling. And because simulation is by far the most prevalent modeling technique, more than half the book's content is devoted to simulation. The book provides an overview of the simulation techniques in the computer designer's toolbox, followed by various simulation acceleration techniques including sampled simulation, statistical simulation, parallel simulation and hardware-accelerated simulation. Table of Contents: Introduction / Performance Metrics / Workload Design / Analytical Performance Modeling / Simulation / Sampled Simulation / Statistical Simulation / Parallel Simulation and Hardware Acceleration / Concluding Remarks

High-Performance Energy-Efficient Microprocessor Design

High-Performance Energy-Efficient Microprocessor Design PDF Author: Vojin G. Oklobdzija
Publisher: Springer Science & Business Media
ISBN: 0387340475
Category : Technology & Engineering
Languages : en
Pages : 342

Get Book

Book Description
Written by the world’s most prominent microprocessor design leaders from industry and academia, this book provides complete coverage of all aspects of complex microprocessor design: technology, power management, clocking, high-performance architecture, design methodologies, memory and I/O design, computer aided design, testing and design for testability. The chapters provide state-of-the-art knowledge while including sufficient tutorial material to bring non-experts up to speed. A useful companion to design engineers working in related areas.