Computational Electromagnetics

Computational Electromagnetics PDF Author: Anders Bondeson
Publisher: Springer Science & Business Media
ISBN: 0387261605
Category : Mathematics
Languages : en
Pages : 232

Get Book

Book Description
Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included

Computational Electromagnetics

Computational Electromagnetics PDF Author: Anders Bondeson
Publisher: Springer Science & Business Media
ISBN: 0387261605
Category : Mathematics
Languages : en
Pages : 232

Get Book

Book Description
Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included

Computational Electromagnetism

Computational Electromagnetism PDF Author: Alain Bossavit
Publisher: Academic Press
ISBN: 9780080529660
Category : Technology & Engineering
Languages : en
Pages : 352

Get Book

Book Description
Computational Electromagnetism refers to the modern concept of computer-aided analysis, and design, of virtually all electric devices such as motors, machines, transformers, etc., as well as of the equipment inthe currently booming field of telecommunications, such as antennas, radars, etc. The present book is uniquely written to enable the reader-- be it a student, a scientist, or a practitioner-- to successfully perform important simulation techniques and to design efficient computer software for electromagnetic device analysis. Numerous illustrations, solved exercises, original ideas, and an extensive and up-to-date bibliography make it a valuable reference for both experts and beginners in the field. A researcher and practitioner will find in it information rarely available in other sources, such as on symmetry, bilateral error bounds by complimentarity, edge and face elements, treatment of infinite domains, etc. At the same time, the book is a useful teaching tool for courses in computational techniques in certain fields of physics and electrical engineering. As a self-contained text, it presents an extensive coverage of the most important concepts from Maxwells equations to computer-solvable algebraic systems-- for both static, quasi-static, and harmonic high-frequency problems. Benefits To the Engineer A sound background necessary not only to understand the principles behind variational methods and finite elements, but also to design pertinent and well-structured software. To the Specialist in Numerical Modeling The book offers new perspectives of practical importance on classical issues: the underlying symmetry of Maxwell equations, their interaction with other fields of physics in real-life modeling, the benefits of edge and face elements, approaches to error analysis, and "complementarity." To the Teacher An expository strategy that will allow you to guide the student along a safe and easy route through otherwise difficult concepts: weak formulations and their relation to fundamental conservation principles of physics, functional spaces, Hilbert spaces, approximation principles, finite elements, and algorithms for solving linear systems. At a higher level, the book provides a concise and self-contained introduction to edge elements and their application to mathematical modeling of the basic electromagnetic phenomena, and static problems, such as eddy-current problems and microwaves in cavities. To the Student Solved exercises, with "hint" and "full solution" sections, will both test and enhance the understanding of the material. Numerous illustrations will help in grasping difficult mathematical concepts.

Theory and Computation of Electromagnetic Fields

Theory and Computation of Electromagnetic Fields PDF Author: Jian-Ming Jin
Publisher: John Wiley & Sons
ISBN: 111910808X
Category : Science
Languages : en
Pages : 744

Get Book

Book Description
Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Computational Electromagnetics for RF and Microwave Engineering

Computational Electromagnetics for RF and Microwave Engineering PDF Author: David B. Davidson
Publisher: Cambridge University Press
ISBN: 9780521838597
Category : Juvenile Nonfiction
Languages : en
Pages : 450

Get Book

Book Description
Publisher Description

Essentials of Computational Electromagnetics

Essentials of Computational Electromagnetics PDF Author: Xin-Qing Sheng
Publisher: John Wiley & Sons
ISBN: 0470829656
Category : Science
Languages : en
Pages : 291

Get Book

Book Description
Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem

Computational Electromagnetics with MATLAB, Fourth Edition

Computational Electromagnetics with MATLAB, Fourth Edition PDF Author: Matthew N.O. Sadiku
Publisher: CRC Press
ISBN: 1351365096
Category : Technology & Engineering
Languages : en
Pages : 687

Get Book

Book Description
This fourth edition of the text reflects the continuing increase in awareness and use of computational electromagnetics and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite-difference time-domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. It teaches the readers how to pose, numerically analyze, and solve EM problems, to give them the ability to expand their problem-solving skills using a variety of methods, and to prepare them for research in electromagnetism. Includes new homework problems in each chapter. Each chapter is updated with the current trends in CEM. Adds a new appendix on CEM codes, which covers commercial and free codes. Provides updated MATLAB code.

Analytical and Computational Methods in Electromagnetics

Analytical and Computational Methods in Electromagnetics PDF Author: Ramesh Garg
Publisher: Artech House
ISBN: 1596933860
Category : Electromagnetic waves
Languages : en
Pages : 528

Get Book

Book Description
Achieve optimal microwave system performance by mastering the principles and methods underlying today's powerful computational tools and commercial software in electromagnetics. This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material. Moreover, it features numerous solved problems that help ensure your understanding of key concepts throughout the book.

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB®

Electromagnetic and Photonic Simulation for the Beginner: Finite-Difference Frequency-Domain in MATLAB® PDF Author: Raymond C. Rumpf
Publisher: Artech House
ISBN: 1630819271
Category : Technology & Engineering
Languages : en
Pages : 350

Get Book

Book Description
This book teaches the finite-difference frequency-domain (FDFD) method from the simplest concepts to advanced three-dimensional simulations. It uses plain language and high-quality graphics to help the complete beginner grasp all the concepts quickly and visually. This single resource includes everything needed to simulate a wide variety of different electromagnetic and photonic devices. The book is filled with helpful guidance and computational wisdom that will help the reader easily simulate their own devices and more easily learn and implement other methods in computational electromagnetics. Special techniques in MATLAB® are presented that will allow the reader to write their own FDFD programs. Key concepts in electromagnetics are reviewed so the reader can fully understand the calculations happening in FDFD. A powerful method for implementing the finite-difference method is taught that will enable the reader to solve entirely new differential equations and sets of differential equations in mere minutes. Separate chapters are included that describe how Maxwell’s equations are approximated using finite-differences and how outgoing waves can be absorbed using a perfectly matched layer absorbing boundary. With this background, a chapter describes how to calculate guided modes in waveguides and transmission lines. The effective index method is taught as way to model many three-dimensional devices in just two-dimensions. Another chapter describes how to calculate photonic band diagrams and isofrequency contours to quickly estimate the properties of periodic structures like photonic crystals. Next, a chapter presents how to analyze diffraction gratings and calculate the power coupled into each diffraction order. This book shows that many devices can be simulated in the context of a diffraction grating including guided-mode resonance filters, photonic crystals, polarizers, metamaterials, frequency selective surfaces, and metasurfaces. Plane wave sources, Gaussian beam sources, and guided-mode sources are all described in detail, allowing devices to be simulated in multiple ways. An optical integrated circuit is simulated using the effective index method to build a two-dimensional model of the 3D device and then launch a guided-mode source into the circuit. A chapter is included to describe how the code can be modified to easily perform parameter sweeps, such as plotting reflection and transmission as a function of frequency, wavelength, angle of incidence, or a dimension of the device. The last chapter is advanced and teaches FDFD for three-dimensional devices composed of anisotropic materials. It includes simulations of a crossed grating, a doubly-periodic guided-mode resonance filter, a frequency selective surface, and an invisibility cloak. The chapter also includes a parameter retrieval from a left-handed metamaterial. The book includes all the MATLAB codes and detailed explanations of all programs. This will allow the reader to easily modify the codes to simulate their own ideas and devices. The author has created a website where the MATLAB codes can be downloaded, errata can be seen, and other learning resources can be accessed. This is an ideal book for both an undergraduate elective course as well as a graduate course in computational electromagnetics because it covers the background material so well and includes examples of many different types of devices that will be of interest to a very wide audience.

Computational Methods in Geophysical Electromagnetics

Computational Methods in Geophysical Electromagnetics PDF Author: Eldad Haber
Publisher: SIAM
ISBN: 1611973805
Category : Science
Languages : en
Pages : 144

Get Book

Book Description
This monograph provides a framework for students and practitioners who are working on the solution of electromagnetic imaging in geophysics. Bridging the gap between theory and practical applied material (for example, inverse and forward problems), it provides a simple explanation of finite volume discretization, basic concepts in solving inverse problems through optimization, a summary of applied electromagnetics methods, and MATLAB?÷code for efficient computation.

Computational Methods for Electromagnetics

Computational Methods for Electromagnetics PDF Author: Andrew F. Peterson
Publisher: Universities Press
ISBN: 9788173713774
Category : Electromagnetism
Languages : en
Pages : 600

Get Book

Book Description
This book is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment, Employing a unified and coherent approach that is unmatched in the field, the authors deatil both integral and differential equations using the method-of-moments and finite-element procedures.