Combined Cooling, Heating, and Power Systems

Combined Cooling, Heating, and Power Systems PDF Author: Yang Shi
Publisher: John Wiley & Sons
ISBN: 1119283353
Category : Technology & Engineering
Languages : en
Pages : 195

Get Book

Book Description
A comprehensive review of state-of-the-art CCHP modeling, optimization, and operation theory and practice This book was written by an international author team at the forefront of combined cooling, heating, and power (CCHP) systems R&D. It offers systematic coverage of state-of-the-art mathematical modeling, structure optimization, and CCHP system operation, supplemented with numerous illustrative case studies and examples. CCHP systems are an exciting emerging energy technology offering significant economic and environmental benefits. Combined Cooling, Heating, and Power Systems: Modelling, Optimization, and Operation is a timely response to ongoing efforts to maximize the efficiency of that technology. It begins with a survey of CCHP systems from the technological and societal perspectives, offering readers a broad and stimulating overview of the field. It then digs down into topics crucial for optimal CCHP operation. Discussions of each topic are carefully structured, walking readers from introduction and background to technical details. A set of new methodologies for the modeling, optimization and control of CCHP systems are presented within a unified framework. And the authors demonstrate innovative solutions to a variety of CCHP systems problems using new approaches to optimal power flow, load forecasting, and system operation design. Provides a comprehensive review of state-of-the-art of CCHP system development Presents new methodologies for mathematical modeling, optimization, and advanced control Combines theoretical rigor with real-world application perspectives Features numerous examples demonstrating an array of new design strategies Reflects the combined experience of veteran researchers in the field whose contributions are well recognized within the energy community Offers excellent background reading for students currently enrolled in the growing number of courses on energy systems at universities worldwide Timely, authoritative, and offering a balanced presentation of theory and practice, Combined Cooling, Heating, and Power Systems: Modelling, Optimization, and Operation is a valuable resource forresearchers, design practitioners, and graduate students in the areas of control theory, energy management, and energy systems design.

Combined Cooling, Heating, and Power (CCHP) System

Combined Cooling, Heating, and Power (CCHP) System PDF Author:
Publisher:
ISBN:
Category : Cogeneration of electric power and heat
Languages : en
Pages : 7

Get Book

Book Description


Combined Cooling, Heating and Power

Combined Cooling, Heating and Power PDF Author: Masood Ebrahimi
Publisher: Elsevier
ISBN: 0080999921
Category : Technology & Engineering
Languages : en
Pages : 218

Get Book

Book Description
A professional reference title written primarily for researchers in thermal engineering, Combined Cooling, Heating and Power: Decision-Making, Design and Optimization summarizes current research on decision-making and optimization in combined cooling, heating, and power (CCHP) systems. The authors provide examples of using these decision-making tools with five examples that run throughout the book. Offers a unique emphasis on newer techniques in decision-making Provides examples of decision-making tools with five examples that run throughout the book

Energy Efficient Operation Strategy Design for the Combined Cooling, Heating and Power System

Energy Efficient Operation Strategy Design for the Combined Cooling, Heating and Power System PDF Author: Mingxi Liu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book

Book Description
Combined cooling, heating and power (CCHP) systems are known as trigeneration systems, designed to provide electricity, cooling and heating simultaneously. The CCHP system has become a hot topic for its high system efficiency, high economic efficiency and less greenhouse gas (GHG) emissions in recent years. The efficiency of the CCHP system depends on the appropriate system configuration, operation strategy and facility size. Due to the inherent and inevitable energy waste of the traditional operation strategies, i.e., following the electric load (FEL) and following the thermal load (FTL), more efficient operation strategy should be designed. To achieve the highest system efficiency, facilities in the system should be sized to match with the corresponding operation strategy. In order to reduce the energy waste in traditional operation strategies and improve the system efficiency, two operation strategy design methods and sizing problems are studied (In Chapter 2 and Chapter 3). Most of the improved operation strategies in the literature are based on the ''balance'' plane, which implies the match of the electric demands and thermal demands. However, in more than 95% energy demand patterns, the demands cannot match with each other at this exact ''balance'' plane. To continuously use the ''balance'' concept, in Chapter 2, the system configuration is modified from the one with single absorption chiller to be the one with hybrid chillers and expand the ''balance'' plane to be a ''balance'' space by tuning the electric cooling to cool load ratio. With this new ''balance'' space, an operation strategy is designed and the power generation unit (PGU) capacity is optimized according to the proposed operation strategy to reduce the energy waste and improve the system efficiency. A case study is conducted to verify the feasibility and effectiveness of the proposed operation strategy. In Chapter 3, a more mathematical approach to schedule the energy input and power flow is proposed. By using the concept of energy hub, the CCHP system is modelled in a matrix form. As a result, the whole CCHP system is an input-output model. Setting the objective function to be a weighted summation of primary energy savings (PESs), hourly total cost savings (HTCs) and carbon dioxide emissions reduction (CDER), the optimization problem, constrained by equality and inequality constraints, is solved by the sequential quadratic programming (SQP). The PGU capacity is also sized under the proposed optimal operation strategy. In the case study, compared to FEL and FTL, the proposed optimal operation strategy saves more primary energy and annual total cost, and can be more environmental friendly. Finally, the conclusions of this thesis is summarized and some future work is discussed.

Energy Systems and Environment

Energy Systems and Environment PDF Author: Pavel Tsvetkov
Publisher: BoD – Books on Demand
ISBN: 1789237106
Category : Technology & Engineering
Languages : en
Pages : 232

Get Book

Book Description
This book looks at environmental aspects of energy technologies, from common traditional sources in use, new sources, and emerging sources and technologies. The objective of this book is to serve as a one-stop comprehensive information resource on energy and environment topics, from energy science to energy engineering to energy politics. Starting with science and technology topics we link them to economics and politics showcasing interconnections between energy sources, energy utilization, energy conversion, and sustainability under the common theme of energy and environment. The book achieves its objective by offering and integrating deeply technical and socioeconomics papers together on energy and environment topics.

Polygeneration Systems

Polygeneration Systems PDF Author: Francesco Calise
Publisher: Academic Press
ISBN: 0128206268
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book

Book Description
The support for polygeneration lies in the possibility of integrating different technologies into a single energy system, to maximize the utilization of both fossil and renewable fuels. A system that delivers multiple forms of energy to users, maximizing the overall efficiency makes polygeneration an emerging and viable option for energy consuming industries. Polygeneration Systems: Design, Processes and Technologies provides simple and advanced calculation techniques to evaluate energy, environmental and economic performance of polygeneration systems under analysis. With specific design guidelines for each type of polygeneration system and experimental performance data, referred both to single components and overall systems, this title covers all aspects of polygeneration from design to operation, optimization and practical implementation. Giving different aspects of both fossil and non-fossil fuel based polygeneration and the wider area of polygeneration processes, this book helps readers learn general principles to specific system design and development through analysis of case studies, examples, simulation characteristics and thermodynamic and economic data. Detailed economic data for technology to assist developing feasibility studies regarding the possible application of polygeneration technologies Offers a comprehensive list of all current numerical and experimental results of polygeneration available Includes simulation models, cost figures, demonstration projects and test standards for designers and researchers to validate their own models and/or to test the reliability of their results

Exergetic, Energetic and Environmental Dimensions

Exergetic, Energetic and Environmental Dimensions PDF Author: Ibrahim Dincer
Publisher: Academic Press
ISBN: 0128137355
Category : Technology & Engineering
Languages : en
Pages : 1116

Get Book

Book Description
This edited book looks at recent studies on interdisciplinary research related to exergy, energy, and the environment. This topic is of prime significance – there is a strong need for practical solutions through better design, analysis and assessment in order to achieve better efficiency, environment and sustainability. Exergetic, Energetic and Environmental Dimensions covers a number of topics ranging from thermodynamic optimization of energy systems, to the environmental impact assessment and clean energy, offering readers a comprehensive reference on analysis, modeling, development, experimental investigation, and improvement of many micro to macro systems and applications, ranging from basic to advanced categories. Its comprehensive content includes: Comprehensive coverage of development of systems considering exergy, energy, and environmental issues, along with the most up-to-date information in the area, plus recent developments New developments in the area of exergy, including recent debate involving the shaping of future directions and priorities for better environment, sustainable development and energy security Provides a number of illustrative examples, practical applications, and case studies Introduces recently developed technological and strategic solutions and engineering applications for professionals in the area Provides numerous engineering examples and applications on exergy Offers a variety of problems that foster critical thinking and skill development

Advanced Power Generation Systems

Advanced Power Generation Systems PDF Author: Ibrahim Dincer
Publisher: Academic Press
ISBN: 0123838614
Category : Technology & Engineering
Languages : en
Pages : 656

Get Book

Book Description
Advanced Power Generation Systems examines the full range of advanced multiple output thermodynamic cycles that can enable more sustainable and efficient power production from traditional methods, as well as driving the significant gains available from renewable sources. These advanced cycles can harness the by-products of one power generation effort, such as electricity production, to simultaneously create additional energy outputs, such as heat or refrigeration. Gas turbine-based, and industrial waste heat recovery-based combined, cogeneration, and trigeneration cycles are considered in depth, along with Syngas combustion engines, hybrid SOFC/gas turbine engines, and other thermodynamically efficient and environmentally conscious generation technologies. The uses of solar power, biomass, hydrogen, and fuel cells in advanced power generation are considered, within both hybrid and dedicated systems. The detailed energy and exergy analysis of each type of system provided by globally recognized author Dr. Ibrahim Dincer will inform effective and efficient design choices, while emphasizing the pivotal role of new methodologies and models for performance assessment of existing systems. This unique resource gathers information from thermodynamics, fluid mechanics, heat transfer, and energy system design to provide a single-source guide to solving practical power engineering problems. The only complete source of info on the whole array of multiple output thermodynamic cycles, covering all the design options for environmentally-conscious combined production of electric power, heat, and refrigeration Offers crucial instruction on realizing more efficiency in traditional power generation systems, and on implementing renewable technologies, including solar, hydrogen, fuel cells, and biomass Each cycle description clarified through schematic diagrams, and linked to sustainable development scenarios through detailed energy, exergy, and efficiency analyses Case studies and examples demonstrate how novel systems and performance assessment methods function in practice

Support of U.S. Department of Energy Contract for Novel Control of Combined Cooling, Heating and Power Systems

Support of U.S. Department of Energy Contract for Novel Control of Combined Cooling, Heating and Power Systems PDF Author: Li Zhao
Publisher:
ISBN:
Category : Cogeneration of electric power and heat
Languages : en
Pages : 94

Get Book

Book Description


Optimization of Energy Systems

Optimization of Energy Systems PDF Author: Ibrahim Dinçer
Publisher: John Wiley & Sons
ISBN: 111889443X
Category : Technology & Engineering
Languages : en
Pages : 469

Get Book

Book Description
An essential resource for optimizing energy systems to enhance design capability, performance and sustainability Optimization of Energy Systems comprehensively describes the thermodynamic modelling, analysis and optimization of numerous types of energy systems in various applications. It provides a new understanding of the system and the process of defining proper objective functions for determination of the most suitable design parameters for achieving enhanced efficiency, cost effectiveness and sustainability. Beginning with a general summary of thermodynamics, optimization techniques and optimization methods for thermal components, the book goes on to describe how to determine the most appropriate design parameters for more complex energy systems using various optimization methods. The results of each chapter provide potential tools for design, analysis, performance improvement, and greenhouse gas emissions reduction. Key features: Comprehensive coverage of the modelling, analysis and optimization of many energy systems for a variety of applications. Examples, practical applications and case studies to put theory into practice. Study problems at the end of each chapter that foster critical thinking and skill development. Written in an easy-to-follow style, starting with simple systems and moving to advanced energy systems and their complexities. A unique resource for understanding cutting-edge research in the thermodynamic analysis and optimization of a wide range of energy systems, Optimization of Energy Systems is suitable for graduate and senior undergraduate students, researchers, engineers, practitioners, and scientists in the area of energy systems.