Advances in Earthquake Engineering for Urban Risk Reduction

Advances in Earthquake Engineering for Urban Risk Reduction PDF Author: S. Tanvir Wasti
Publisher: Springer Science & Business Media
ISBN: 1402045719
Category : Science
Languages : en
Pages : 552

Get Book

Book Description
Earthquakes affecting urban areas can lead to catastrophic situations and hazard mitigation requires preparatory measures at all levels. Structural assessment is the diagnosis of the seismic health of buildings. Assessment is the prelude to decisions about rehabilitation or even demolition. The scale of the problem in dense urban settings brings about a need for macro seismic appraisal procedures because large numbers of existing buildings do not conform to the increased requirements of new earthquake codes and specifications or have other deficiencies. It is the vulnerable buildings - liable to cause damage and loss of life - that need immediate attention and urgent appraisal in order to decide if structural rehabilitation and upgrading are feasible. Current economic, efficient and occupant-friendly rehabilitation techniques vary widely and include the application either of precast concrete panels or layers, strips and patches of fiber reinforced polymers (FRP) in strategic locations. The papers in this book, many by renowned authorities in earthquake engineering, chart new and vital directions of research and application in the assessment and rehabilitation of buildings in seismic regions. While several papers discuss the probabilistic prediction and quantification of structural damage, others present approaches related with the in-situ and occupant friendly upgrading of buildings and propose both economical and practical techniques to address the problem.

Advances in Earthquake Engineering for Urban Risk Reduction

Advances in Earthquake Engineering for Urban Risk Reduction PDF Author: S. Tanvir Wasti
Publisher: Springer Science & Business Media
ISBN: 1402045719
Category : Science
Languages : en
Pages : 552

Get Book

Book Description
Earthquakes affecting urban areas can lead to catastrophic situations and hazard mitigation requires preparatory measures at all levels. Structural assessment is the diagnosis of the seismic health of buildings. Assessment is the prelude to decisions about rehabilitation or even demolition. The scale of the problem in dense urban settings brings about a need for macro seismic appraisal procedures because large numbers of existing buildings do not conform to the increased requirements of new earthquake codes and specifications or have other deficiencies. It is the vulnerable buildings - liable to cause damage and loss of life - that need immediate attention and urgent appraisal in order to decide if structural rehabilitation and upgrading are feasible. Current economic, efficient and occupant-friendly rehabilitation techniques vary widely and include the application either of precast concrete panels or layers, strips and patches of fiber reinforced polymers (FRP) in strategic locations. The papers in this book, many by renowned authorities in earthquake engineering, chart new and vital directions of research and application in the assessment and rehabilitation of buildings in seismic regions. While several papers discuss the probabilistic prediction and quantification of structural damage, others present approaches related with the in-situ and occupant friendly upgrading of buildings and propose both economical and practical techniques to address the problem.

Urban Disaster Mitigation: The Role of Engineering and Technology

Urban Disaster Mitigation: The Role of Engineering and Technology PDF Author: F.Y. Cheng
Publisher: Elsevier
ISBN: 9780080543468
Category : Technology & Engineering
Languages : en
Pages : 320

Get Book

Book Description
Great loss of human life, structural damage, and social and economic upheaval occur repeatedly due to such natural hazards as earthquakes, typhoons, hurricanes, landslides, floods and tsunamis. Both the US and Taiwan, along with many other countries, have a history of such occurrences and a common need to reduce their effects. This volume includes papers from the fourth symposium workshop, held jointly between the US and Taiwan to discuss research and its application to multiple hazard mitigation. The workshop, Urban Disaster Mitigation, The Role of Engineering and Technology, discussed lessons learned from recent natural disasters; assessed results of Taiwan's multiple hazards research program and potential application to the US; and proposed further studies on subjects of mutual concern. Topics include recent scientific findings obtained in various natural hazard areas and assessment of actual and potential damage from earthquakes, floods and landslides. Of particular importance are measures that can be taken to mitigate these hazards ranging from use of new algorithms for structural engineering to warning systems for a given region. At a time when natural disasters are widespread, engineers play a key role. Construction methods and building codes are changing; current knowledge shapes the direction of these changes. The research results presented in these proceedings will benefit both the academic and practicing communities around the world, strengthening the relationship between these two important parties.

Earthquake Risk Reduction

Earthquake Risk Reduction PDF Author: David J. Dowrick
Publisher: John Wiley & Sons
ISBN: 0470869348
Category : Technology & Engineering
Languages : en
Pages : 520

Get Book

Book Description
Encompassing theory and field experience, this book covers all the main subject areas in earthquake risk reduction, ranging from geology, seismology, structural and soil dynamics to hazard and risk assessment, risk management and planning, engineering and the architectural design of new structures and equipment. Earthquake Risk Reduction outlines individual national weaknesses that contribute to earthquake risk to people and property; calculates the seismic response of soils and structures, using the structural continuum 'Subsoil - Substructure - Superstructure - Non-structure'; evaluates the effectiveness of given designs and construction procedures for reducing casualties and financial losses; provides guidance on the key issue of choice of structural form; presents earthquake resistant designs methods for the four main structural materials - steel, concrete, reinforced masonry and timber - as well as for services equipment, plant and non-structural architectural components; contains a chapter devoted to problems involved in improving (retrofitting) the existing built environment. Compiled from the author's extensive professional experience in earthquake engineering, this key text provides an excellent treatment of the complex multidisciplinary process of earthquake risk reduction. This book will prove an invaluable reference and guiding tool to practicing civil and structural engineers and architects, researchers and postgraduate students in seismology, local governments and risk management officials.

Assessing and Managing Earthquake Risk

Assessing and Managing Earthquake Risk PDF Author: Carlos Sousa Oliveira
Publisher: Springer Science & Business Media
ISBN: 1402036086
Category : Science
Languages : en
Pages : 561

Get Book

Book Description
* Multidisciplinary approach of risk assessment and management, which can provide more efficient earthquake mitigation. * Transfer of Geo-scientific and engineering knowledge to Civil Protection and insurance agents * Approaches and common practices directly related to the preparation of earthquake emergency plans * Illustrated examples of actual applications, including web sites * Case-studies and information on relevant international projects

Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering

Preventing Earthquake Disasters: The Grand Challenge in Earthquake Engineering PDF Author: National Research Council (U.S.). Committee to Develop a Long-Term Research Agenda for the Network for Earthquake Engineering Simulation (NEES)
Publisher: National Academy Press
ISBN:
Category : Nature
Languages : en
Pages : 200

Get Book

Book Description
The Network for Earthquake Engineering Simulation (NEES), administered by the National Science Foundation (NSF), is scheduled to become operational in 2004. These network sites will perform a range of experiments to test and validate complex computer models being developed to simulate the behavior of structures subjected to earthquakes. To assist in this effort, the NSF requested the National Research Council(NRC) to frame the major questions to be addressed by and to develop a long-term research agenda for NEES. Preventing Earthquake Disasters presents an overview of the grand challenge including six critical research problems making up that challenge. The report also provides an assessment of earthquake engineering research issues and the role of information technology in that research effort, and a research plan for NEES.

National Earthquake Resilience

National Earthquake Resilience PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309186773
Category : Science
Languages : en
Pages : 197

Get Book

Book Description
The United States will certainly be subject to damaging earthquakes in the future. Some of these earthquakes will occur in highly populated and vulnerable areas. Coping with moderate earthquakes is not a reliable indicator of preparedness for a major earthquake in a populated area. The recent, disastrous, magnitude-9 earthquake that struck northern Japan demonstrates the threat that earthquakes pose. Moreover, the cascading nature of impacts-the earthquake causing a tsunami, cutting electrical power supplies, and stopping the pumps needed to cool nuclear reactors-demonstrates the potential complexity of an earthquake disaster. Such compound disasters can strike any earthquake-prone populated area. National Earthquake Resilience presents a roadmap for increasing our national resilience to earthquakes. The National Earthquake Hazards Reduction Program (NEHRP) is the multi-agency program mandated by Congress to undertake activities to reduce the effects of future earthquakes in the United States. The National Institute of Standards and Technology (NIST)-the lead NEHRP agency-commissioned the National Research Council (NRC) to develop a roadmap for earthquake hazard and risk reduction in the United States that would be based on the goals and objectives for achieving national earthquake resilience described in the 2008 NEHRP Strategic Plan. National Earthquake Resilience does this by assessing the activities and costs that would be required for the nation to achieve earthquake resilience in 20 years. National Earthquake Resilience interprets resilience broadly to incorporate engineering/science (physical), social/economic (behavioral), and institutional (governing) dimensions. Resilience encompasses both pre-disaster preparedness activities and post-disaster response. In combination, these will enhance the robustness of communities in all earthquake-vulnerable regions of our nation so that they can function adequately following damaging earthquakes. While National Earthquake Resilience is written primarily for the NEHRP, it also speaks to a broader audience of policy makers, earth scientists, and emergency managers.

Multi-hazard Approaches to Civil Infrastructure Engineering

Multi-hazard Approaches to Civil Infrastructure Engineering PDF Author: Paolo Gardoni
Publisher: Springer
ISBN: 3319297139
Category : Technology & Engineering
Languages : en
Pages : 573

Get Book

Book Description
This collection focuses on the development of novel approaches to address one of the most pressing challenges of civil engineering, namely the mitigation of natural hazards. Numerous engineering books to date have focused on, and illustrate considerable progress toward, mitigation of individual hazards (earthquakes, wind, and so forth.). The current volume addresses concerns related to overall safety, sustainability and resilience of the built environment when subject to multiple hazards: natural disaster events that are concurrent and either correlated (e.g., wind and surge); uncorrelated (e.g., earthquake and flood); cascading (e.g., fire following earthquake); or uncorrelated and occurring at different times (e.g., wind and earthquake). The authors examine a range of specific topics including methodologies for vulnerability assessment of structures, new techniques to reduce the system demands through control systems; instrumentation, monitoring and condition assessment of structures and foundations; new techniques for repairing structures that have suffered damage during past events, or for structures that have been found in need of strengthening; development of new design provisions that consider multiple hazards, as well as questions from law and the humanities relevant to the management of natural and human-made hazards.

Urban Resilience for Emergency Response and Recovery

Urban Resilience for Emergency Response and Recovery PDF Author: Gian Paolo Cimellaro
Publisher: Springer
ISBN: 3319306561
Category : Science
Languages : en
Pages : 522

Get Book

Book Description
This book introduces the concepts of Resilience-Based Design (RBD) as an extension of Performance-Based Design. It provides readers with a range of cutting-edge methodologies for evaluating resilience and clarifies the difference between resilience, vulnerability and sustainability. Initially, the book focuses on describing the different types of uncertainty that arise in the context of resilience evaluation. This is followed by an entire chapter dedicated to the analytical and experimental recovery functions. Then, starting from the definition of resilience provided by MCEER, an extension of the methodology is provided that introduces the seven dimensions of Community Resilience, summarized in the acronym PEOPLES. They are: Population and Demographics, Environmental/Ecosystem, Organized Governmental Services, Physical infrastructures, Lifestyle and Community Competence, Economic Development, and Socio-Cultural Capital. For each dimension, components and subcomponents are defined and the related indices are provided. Underlining the importance of the physical infrastructure dimension, the book provides several examples of applications for transportation, hydraulic, gas and power networks. The problem of interdependencies and the domino effect is also taken into account during the analysis. One of the book’s closing chapters focuses on different methodologies for improving disaster preparedness and engineering mitigation strategies, while the last chapter describes the different computer platforms available on the market for evaluating Community Resilience. The book offers readers an extensive introduction to the concept of Resilience-Based Design, together with selected advanced applications for specialists. No prerequisite knowledge is needed in order to understand the book, and the Appendix offers valuable supplemental information on e.g. the probabilistic concepts. As such, the book offers a valuable resource for graduate students, young engineers and researchers who are interested in the topic, and can also be used as a supplementary text in graduate level Disaster Resilience courses.

Recent Challenges and Advances in Geotechnical Earthquake Engineering

Recent Challenges and Advances in Geotechnical Earthquake Engineering PDF Author: Sitharam, T.G.
Publisher: IGI Global
ISBN: 1522569499
Category : Technology & Engineering
Languages : en
Pages : 315

Get Book

Book Description
Solid design and craftsmanship are a necessity for structures and infrastructures that must stand up to natural disasters on a regular basis. Continuous research developments in the engineering field are imperative for sustaining buildings against the threat of earthquakes and other natural disasters. Recent Challenges and Advances in Geotechnical Earthquake Engineering provides innovative insights into the methods of structural engineering techniques, as well as disaster management strategies. The content within this publication represents the work of rock fracturing, hazard analysis, and seismic acceleration. It is a vital reference source for civil engineers, researchers, and academicians, and covers topics centered on improving a structure’s safety, stability, and resistance to seismic hazards.

Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society

Performance-Based Seismic Engineering: Vision for an Earthquake Resilient Society PDF Author: Matej Fischinger
Publisher: Springer
ISBN: 9401788758
Category : Science
Languages : en
Pages : 505

Get Book

Book Description
The Bled workshops have traditionally produced reference documents providing visions for the future development of earthquake engineering as foreseen by leading researchers in the field. The participants of the 2011 workshop built on the tradition of these events initiated by Professors Fajfar and Krawinkler to honor their important research contributions and have now produced a book providing answers to crucial questions in today’s earthquake engineering: “What visible changes in the design practice have been brought about by performance-based seismic engineering? What are the critical needs for future advances? What actions should be taken to respond to those needs?” The key answer is that research interests should go beyond the narrow technical aspects and that the seismic resilience of society as a whole should become an essential part of the planning and design process. The book aims to provide essential guidelines for researchers, professionals and students in the field of earthquake engineering. It will also be of particular interest for all those working at insurance companies, governmental, civil protection and emergency management agencies that are responsible for assessing and planning community resilience. The introductory chapter of the book is based on the keynote presentation given at the workshop by the late Professor Helmut Krawinkler. As such, the book includes Helmut’s last and priceless address to the engineering community, together with his vision and advice for the future development of performance-based design, earthquake engineering and seismic risk management.