Advanced Physics of Electron Transport in Semiconductors and Nanostructures

Advanced Physics of Electron Transport in Semiconductors and Nanostructures PDF Author: Massimo V. Fischetti
Publisher: Springer
ISBN: 3319011014
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book

Book Description
This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Advanced Physics of Electron Transport in Semiconductors and Nanostructures

Advanced Physics of Electron Transport in Semiconductors and Nanostructures PDF Author: Massimo V. Fischetti
Publisher: Springer
ISBN: 3319011014
Category : Technology & Engineering
Languages : en
Pages : 474

Get Book

Book Description
This textbook is aimed at second-year graduate students in Physics, Electrical Engineering, or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale.Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence, this book discusses those sub-topics which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/ micro-electronics industry.Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, of electron scattering with phonons, plasmons, electrons and photons, of the derivation of transport equations in semiconductors and semiconductor nanostructures somewhat at the quantum level, but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also about III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods applied to the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions of the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). An advanced chapter, Chapter 18, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation. Finally, several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. Four appendices complete the text.

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Electronic Quantum Transport in Mesoscopic Semiconductor Structures PDF Author: Thomas Ihn
Publisher: Springer
ISBN: 0387218289
Category : Science
Languages : en
Pages : 270

Get Book

Book Description
Opening with a brief historical account of electron transport from Ohm's law through transport in semiconductor nanostructures, this book discusses topics related to electronic quantum transport. The book is written for graduate students and researchers in the field of mesoscopic semiconductors or in semiconductor nanostructures. Highlights include review of the cryogenic scanning probe techniques applied to semiconductor nanostructures.

Advanced Physics of Semiconductors

Advanced Physics of Semiconductors PDF Author: Massimo Fischetti
Publisher: Springer
ISBN: 9783319011028
Category : Technology & Engineering
Languages : en
Pages : 600

Get Book

Book Description
This textbook is aimed at second-year graduate students in Physics, Electrical Engineering or Materials Science. It presents a rigorous introduction to electronic transport in solids, especially at the nanometer scale. Understanding electronic transport in solids requires some basic knowledge of Hamiltonian Classical Mechanics, Quantum Mechanics, Condensed Matter Theory, and Statistical Mechanics. Hence this book discusses those sub-topics of these four disciplines which are required to deal with electronic transport in a single, self-contained course. This will be useful for students who intend to work in academia or the nano/micro-electronics industry. Further topics covered include: the theory of energy bands in crystals, of second quantization and elementary excitations in solids, of the dielectric properties of semiconductors with an emphasis on dielectric screening and coupled interfacial modes, on electron scattering with phonons, plasmons, electrons and photons, on the derivation of transport equations in semiconductors and semiconductor nanostructures also at the quantum level. but mainly at the semi-classical level. The text presents examples relevant to current research, thus not only about Si, but also III-V compound semiconductors, nanowires, graphene and graphene nanoribbons. In particular, the text gives major emphasis to plane-wave methods regarding the electronic structure of solids, both DFT and empirical pseudopotentials, always paying attention to their effects on electronic transport and its numerical treatment. The core of the text is electronic transport, with ample discussions on the transport equations derived both in the quantum picture (the Liouville-von Neumann equation) and semi-classically (the Boltzmann transport equation, BTE). Several methods for solving the BTE are also reviewed, including the method of moments, iterative methods, direct matrix inversion, Cellular Automata and Monte Carlo. The first appendix, on the principles of special relativity, is required to understand the ‘minimal’ electromagnetic coupling between electrons and photons and also to introduce the relativistic wave equation for massless spin-1/2 particles. This is of current interest since it is used to describe approximately the electron dispersion in graphene. The second appendix, on alternative interpretations of quantum mechanics, is strictly related to the ‘tricky’ transition from the time-reversible Liouville-von Neumann equation to the time-irreversible Green’s functions, to the density-matrix formalism and, classically, to the Boltzmann transport equation.

Physics of Semiconductors and Nanostructures

Physics of Semiconductors and Nanostructures PDF Author: Jyoti Prasad Banerjee
Publisher: CRC Press
ISBN: 1482223058
Category : Science
Languages : en
Pages : 412

Get Book

Book Description
This book is a comprehensive text on the physics of semiconductors and nanostructures for a large spectrum of students at the final undergraduate level studying physics, material science and electronics engineering. It offers introductory and advanced courses on solid state and semiconductor physics on one hand and the physics of low dimensional semiconductor structures on the other in a single text book. Key Features Presents basic concepts of quantum theory, solid state physics, semiconductors, and quantum nanostructures such as quantum well, quantum wire, quantum dot and superlattice In depth description of semiconductor heterojunctions, lattice strain and modulation doping technique Covers transport in nanostructures under an electric and magnetic field with the topics: quantized conductance, Coulomb blockade, and integer and fractional quantum Hall effect Presents the optical processes in nanostructures under a magnetic field Includes illustrative problems with hints for solutions in each chapter Physics of Semiconductors and Nanostructures will be helpful to students initiating PhD work in the field of semiconductor nanostructures and devices. It follows a unique tutorial approach meeting the requirements of students who find learning the concepts difficult and want to study from a physical perspective.

Semiconductor Nanostructures

Semiconductor Nanostructures PDF Author: Thomas Ihn
Publisher: Oxford University Press
ISBN: 019953442X
Category : Language Arts & Disciplines
Languages : en
Pages : 569

Get Book

Book Description
This introduction to the physics of semiconductor nanostructures and their transport properties emphasizes five fundamental transport phenomena: quantized conductance, tunnelling transport, the Aharonov-Bohm effect, the quantum Hall effect and the Coulomb blockade effect.

Transport in Nanostructures

Transport in Nanostructures PDF Author: David K. Ferry
Publisher: Cambridge University Press
ISBN: 1139480839
Category : Science
Languages : en
Pages :

Get Book

Book Description
The advent of semiconductor structures whose characteristic dimensions are smaller than the mean free path of carriers has led to the development of novel devices, and advances in theoretical understanding of mesoscopic systems or nanostructures. This book has been thoroughly revised and provides a much-needed update on the very latest experimental research into mesoscopic devices and develops a detailed theoretical framework for understanding their behaviour. Beginning with the key observable phenomena in nanostructures, the authors describe quantum confined systems, transmission in nanostructures, quantum dots, and single electron phenomena. Separate chapters are devoted to interference in diffusive transport, temperature decay of fluctuations, and non-equilibrium transport and nanodevices. Throughout the book, the authors interweave experimental results with the appropriate theoretical formalism. The book will be of great interest to graduate students taking courses in mesoscopic physics or nanoelectronics, and researchers working on semiconductor nanostructures.

Physics of Hot Electron Transport in Semiconductors

Physics of Hot Electron Transport in Semiconductors PDF Author: Chin Sen Ting
Publisher: World Scientific
ISBN: 9789810210083
Category : Science
Languages : en
Pages : 336

Get Book

Book Description
This review volume is based primarily on the balance equation approach developed since 1984. It provides a simple and analytical description about hot electron transport, particularly, in semiconductors with higher carrier density where the carrier-carrier collision is much stronger than the single particle scattering. The steady state and time-dependent hot electron transport, thermal noise, hot phonon effect, the memory effect, and other related subjects of charge carriers under strong electric fields are reviewed. The application of Zubarev's nonequilibrium statistical operator to hot electron transport and its equivalence to the balance equation method are also presented. For semiconductors with very low carrier density, the problem can be regarded as a single carrier transport which will be treated non-perturbatively by the nonequilibrium Green's function technique and the path integral theory. The last part of this book consists of a chapter on the dynamic conductivity and the shot noise suppression of a double-carrier resonant tunneling system.

Hot-Electron Transport in Semiconductors

Hot-Electron Transport in Semiconductors PDF Author: L. Reggiani
Publisher: Springer Science & Business Media
ISBN: 3540388494
Category : Technology & Engineering
Languages : en
Pages : 288

Get Book

Book Description
Hot-Electron Transport in Semiconductors (Topics in Applied Physics).

Physics of Nanostructured Solid State Devices

Physics of Nanostructured Solid State Devices PDF Author: Supriyo Bandyopadhyay
Publisher: Springer Science & Business Media
ISBN: 1461411408
Category : Technology & Engineering
Languages : en
Pages : 568

Get Book

Book Description
Physics of Nanostructured Solid State Devices introduces readers to theories and concepts such as semi-classical and quantum mechanical descriptions of electron transport, methods for calculations of band structures in solids with applications in calculation of optical constants, and other advanced concepts. The information presented here will equip readers with the necessary tools to carry out cutting edge research in modern solid state nanodevices.

Hot-Electron Transport in Semiconductors

Hot-Electron Transport in Semiconductors PDF Author: L. Reggiani
Publisher: Springer
ISBN: 9783662309346
Category : Technology & Engineering
Languages : en
Pages : 275

Get Book

Book Description