Active Assessment: Assessing Scientific Inquiry

Active Assessment: Assessing Scientific Inquiry PDF Author: David I. Hanauer
Publisher: Springer Science & Business Media
ISBN: 038789649X
Category : Science
Languages : en
Pages : 144

Get Book

Book Description
The term scienti?c inquiry as manifest in different educational settings covers a wide range of diverse activities. The differences in types of scienti?c inquiry can be organized along a continuum according to the degree of teacher control and intellectual sophistication involved in each type of inquiry. Types of scienti?c inquiry can also be de?ned according to whether they produce cultural knowledge or personal knowledge. Authentic scienti?c inquiry is de?ned according to ?ve characteristics: devel- ment of personal and cultural knowledge; contextualized scienti?c knowledge; the progression toward high-order problem solving; social interaction for s- enti?c goals; and scienti?c inquiry as a multi-stage and multi-representational process. The de?nition of scienti?c inquiry that forms the basis for the development of an assessment program consists of a two-part analytical frame: the de?nition of knowledge types relevant to scienti?c inquiry and the de?nition of an organi- tional frame for these knowledge types. Four types of knowledge are signi?cant for the de?nition of a speci?c s- enti?c inquiry program: cognitive knowledge, physical knowledge, represen- tional knowledge, and presentational knowledge. All four of these knowledge types are considered signi?cant. These four types of knowledge are organized in a framework that consists of two intersecting axes: the axis of knowledge types and the axis of stages of a s- ci?c scienti?c inquiry. This framework describes scienti?c inquiry as multi-stage process that involves the development of a series of in-lab outcomes (represen- tions) over an extended period of time.

Active Assessment: Assessing Scientific Inquiry

Active Assessment: Assessing Scientific Inquiry PDF Author: David I. Hanauer
Publisher: Springer Science & Business Media
ISBN: 038789649X
Category : Science
Languages : en
Pages : 144

Get Book

Book Description
The term scienti?c inquiry as manifest in different educational settings covers a wide range of diverse activities. The differences in types of scienti?c inquiry can be organized along a continuum according to the degree of teacher control and intellectual sophistication involved in each type of inquiry. Types of scienti?c inquiry can also be de?ned according to whether they produce cultural knowledge or personal knowledge. Authentic scienti?c inquiry is de?ned according to ?ve characteristics: devel- ment of personal and cultural knowledge; contextualized scienti?c knowledge; the progression toward high-order problem solving; social interaction for s- enti?c goals; and scienti?c inquiry as a multi-stage and multi-representational process. The de?nition of scienti?c inquiry that forms the basis for the development of an assessment program consists of a two-part analytical frame: the de?nition of knowledge types relevant to scienti?c inquiry and the de?nition of an organi- tional frame for these knowledge types. Four types of knowledge are signi?cant for the de?nition of a speci?c s- enti?c inquiry program: cognitive knowledge, physical knowledge, represen- tional knowledge, and presentational knowledge. All four of these knowledge types are considered signi?cant. These four types of knowledge are organized in a framework that consists of two intersecting axes: the axis of knowledge types and the axis of stages of a s- ci?c scienti?c inquiry. This framework describes scienti?c inquiry as multi-stage process that involves the development of a series of in-lab outcomes (represen- tions) over an extended period of time.

Inquiry-based Science Education

Inquiry-based Science Education PDF Author: Robyn M. Gillies
Publisher: CRC Press
ISBN: 1000036316
Category : Education
Languages : en
Pages : 90

Get Book

Book Description
Students often think of science as disconnected pieces of information rather than a narrative that challenges their thinking, requires them to develop evidence-based explanations for the phenomena under investigation, and communicate their ideas in discipline-specific language as to why certain solutions to a problem work. The author provides teachers in primary and junior secondary school with different evidence-based strategies they can use to teach inquiry science in their classrooms. The research and theoretical perspectives that underpin the strategies are discussed as are examples of how different ones areimplemented in science classrooms to affect student engagement and learning. Key Features: Presents processes involved in teaching inquiry-based science Discusses importance of multi-modal representations in teaching inquiry based-science Covers ways to develop scientifically literacy Uses the Structure of Observed learning Outcomes (SOLO) Taxonomy to assess student reasoning, problem-solving and learning Presents ways to promote scientific discourse, including teacher-student interactions, student-student interactions, and meta-cognitive thinking

Inquiry and the National Science Education Standards

Inquiry and the National Science Education Standards PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309064767
Category : Education
Languages : en
Pages : 223

Get Book

Book Description
Humans, especially children, are naturally curious. Yet, people often balk at the thought of learning scienceâ€"the "eyes glazed over" syndrome. Teachers may find teaching science a major challenge in an era when science ranges from the hardly imaginable quark to the distant, blazing quasar. Inquiry and the National Science Education Standards is the book that educators have been waiting forâ€"a practical guide to teaching inquiry and teaching through inquiry, as recommended by the National Science Education Standards. This will be an important resource for educators who must help school boards, parents, and teachers understand "why we can't teach the way we used to." "Inquiry" refers to the diverse ways in which scientists study the natural world and in which students grasp science knowledge and the methods by which that knowledge is produced. This book explains and illustrates how inquiry helps students learn science content, master how to do science, and understand the nature of science. This book explores the dimensions of teaching and learning science as inquiry for K-12 students across a range of science topics. Detailed examples help clarify when teachers should use the inquiry-based approach and how much structure, guidance, and coaching they should provide. The book dispels myths that may have discouraged educators from the inquiry-based approach and illuminates the subtle interplay between concepts, processes, and science as it is experienced in the classroom. Inquiry and the National Science Education Standards shows how to bring the standards to life, with features such as classroom vignettes exploring different kinds of inquiries for elementary, middle, and high school and Frequently Asked Questions for teachers, responding to common concerns such as obtaining teaching supplies. Turning to assessment, the committee discusses why assessment is important, looks at existing schemes and formats, and addresses how to involve students in assessing their own learning achievements. In addition, this book discusses administrative assistance, communication with parents, appropriate teacher evaluation, and other avenues to promoting and supporting this new teaching paradigm.

Learning & Teaching Scientific Inquiry

Learning & Teaching Scientific Inquiry PDF Author: James Jadrich
Publisher: NSTA Press
ISBN: 193695995X
Category : Education
Languages : en
Pages : 253

Get Book

Book Description
Science teacher educators, curriculum specialists, professional development facilitators, and KOCo8 teachers are bound to increase their understanding and confidence when teaching inquiry after a careful reading of this definitive volume. Advancing a new perspective, James Jadrich and Crystal Bruxvoort assert that scientific inquiry is best taught using models in science rather than focusing on scientistsOCO activities."

Active Assessment for Active Science

Active Assessment for Active Science PDF Author: George E. Hein
Publisher: Heinemann Educational Books
ISBN:
Category : Education
Languages : en
Pages : 178

Get Book

Book Description
Active Assessment for Active Science meets the needs of teachers faced with the task of assessing hands-on science.

Assessing Science Learning

Assessing Science Learning PDF Author: Janet Coffey
Publisher: NSTA Press
ISBN: 1933531401
Category : Science
Languages : en
Pages : 505

Get Book

Book Description


Assessment & Inquiry-based Science Education

Assessment & Inquiry-based Science Education PDF Author: Wynne Harlen
Publisher: Lulu.com
ISBN: 9781291332148
Category : Inquiry-based learning
Languages : en
Pages : 94

Get Book

Book Description


Developing Assessments for the Next Generation Science Standards

Developing Assessments for the Next Generation Science Standards PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309289548
Category : Education
Languages : en
Pages : 288

Get Book

Book Description
Assessments, understood as tools for tracking what and how well students have learned, play a critical role in the classroom. Developing Assessments for the Next Generation Science Standards develops an approach to science assessment to meet the vision of science education for the future as it has been elaborated in A Framework for K-12 Science Education (Framework) and Next Generation Science Standards (NGSS). These documents are brand new and the changes they call for are barely under way, but the new assessments will be needed as soon as states and districts begin the process of implementing the NGSS and changing their approach to science education. The new Framework and the NGSS are designed to guide educators in significantly altering the way K-12 science is taught. The Framework is aimed at making science education more closely resemble the way scientists actually work and think, and making instruction reflect research on learning that demonstrates the importance of building coherent understandings over time. It structures science education around three dimensions - the practices through which scientists and engineers do their work, the key crosscutting concepts that cut across disciplines, and the core ideas of the disciplines - and argues that they should be interwoven in every aspect of science education, building in sophistication as students progress through grades K-12. Developing Assessments for the Next Generation Science Standards recommends strategies for developing assessments that yield valid measures of student proficiency in science as described in the new Framework. This report reviews recent and current work in science assessment to determine which aspects of the Framework's vision can be assessed with available techniques and what additional research and development will be needed to support an assessment system that fully meets that vision. The report offers a systems approach to science assessment, in which a range of assessment strategies are designed to answer different kinds of questions with appropriate degrees of specificity and provide results that complement one another. Developing Assessments for the Next Generation Science Standards makes the case that a science assessment system that meets the Framework's vision should consist of assessments designed to support classroom instruction, assessments designed to monitor science learning on a broader scale, and indicators designed to track opportunity to learn. New standards for science education make clear that new modes of assessment designed to measure the integrated learning they promote are essential. The recommendations of this report will be key to making sure that the dramatic changes in curriculum and instruction signaled by Framework and the NGSS reduce inequities in science education and raise the level of science education for all students.

Teaching Scientific Inquiry

Teaching Scientific Inquiry PDF Author:
Publisher: BRILL
ISBN: 9460911455
Category : Education
Languages : en
Pages : 380

Get Book

Book Description
What are scientific inquiry practices like today? How should schools approach inquiry in science education? Teaching Science Inquiry presents the scholarly papers and practical conversations that emerged from the exchanges at a two-day conference of distinctive North American ‘science studies’ and ‘learning science’scholars.

Knowing What Students Know

Knowing What Students Know PDF Author: National Research Council
Publisher: National Academies Press
ISBN: 0309293227
Category : Education
Languages : en
Pages : 383

Get Book

Book Description
Education is a hot topic. From the stage of presidential debates to tonight's dinner table, it is an issue that most Americans are deeply concerned about. While there are many strategies for improving the educational process, we need a way to find out what works and what doesn't work as well. Educational assessment seeks to determine just how well students are learning and is an integral part of our quest for improved education. The nation is pinning greater expectations on educational assessment than ever before. We look to these assessment tools when documenting whether students and institutions are truly meeting education goals. But we must stop and ask a crucial question: What kind of assessment is most effective? At a time when traditional testing is subject to increasing criticism, research suggests that new, exciting approaches to assessment may be on the horizon. Advances in the sciences of how people learn and how to measure such learning offer the hope of developing new kinds of assessments-assessments that help students succeed in school by making as clear as possible the nature of their accomplishments and the progress of their learning. Knowing What Students Know essentially explains how expanding knowledge in the scientific fields of human learning and educational measurement can form the foundations of an improved approach to assessment. These advances suggest ways that the targets of assessment-what students know and how well they know it-as well as the methods used to make inferences about student learning can be made more valid and instructionally useful. Principles for designing and using these new kinds of assessments are presented, and examples are used to illustrate the principles. Implications for policy, practice, and research are also explored. With the promise of a productive research-based approach to assessment of student learning, Knowing What Students Know will be important to education administrators, assessment designers, teachers and teacher educators, and education advocates.