A Hybrid Physical and Data-drivApproach to Motion Prediction and Control in Human-Robot Collaboration

A Hybrid Physical and Data-drivApproach to Motion Prediction and Control in Human-Robot Collaboration PDF Author: Min Wu
Publisher: Logos Verlag Berlin GmbH
ISBN: 383255484X
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book

Book Description
In recent years, researchers have achieved great success in guaranteeing safety in human-robot interaction, yielding a new generation of robots that can work with humans in close proximity, known as collaborative robots (cobots). However, due to the lack of ability to understand and coordinate with their human partners, the ``co'' in most cobots still refers to ``coexistence'' rather than ``collaboration''. This thesis aims to develop an adaptive learning and control framework with a novel physical and data-driven approach towards a real collaborative robot. The first part focuses on online human motion prediction. A comprehensive study on various motion prediction techniques is presented, including their scope of application, accuracy in different time scales, and implementation complexity. Based on this study, a hybrid approach that combines physically well-understood models with data-driven learning techniques is proposed and validated through a motion data set. The second part addresses interaction control in human-robot collaboration. An adaptive impedance control scheme with human reference estimation is presented. Reinforcement learning is used to find optimal control parameters to minimize a task-orient cost function without fully knowing the system dynamic. The proposed framework is experimentally validated through two benchmark applications for human-robot collaboration: object handover and cooperative object handling. Results show that the robot can provide reliable online human motion prediction, react early to human motion variation, make proactive contributions to physical collaborations, and behave compliantly in response to human forces.

A Hybrid Physical and Data-drivApproach to Motion Prediction and Control in Human-Robot Collaboration

A Hybrid Physical and Data-drivApproach to Motion Prediction and Control in Human-Robot Collaboration PDF Author: Min Wu
Publisher: Logos Verlag Berlin GmbH
ISBN: 383255484X
Category : Technology & Engineering
Languages : en
Pages : 212

Get Book

Book Description
In recent years, researchers have achieved great success in guaranteeing safety in human-robot interaction, yielding a new generation of robots that can work with humans in close proximity, known as collaborative robots (cobots). However, due to the lack of ability to understand and coordinate with their human partners, the ``co'' in most cobots still refers to ``coexistence'' rather than ``collaboration''. This thesis aims to develop an adaptive learning and control framework with a novel physical and data-driven approach towards a real collaborative robot. The first part focuses on online human motion prediction. A comprehensive study on various motion prediction techniques is presented, including their scope of application, accuracy in different time scales, and implementation complexity. Based on this study, a hybrid approach that combines physically well-understood models with data-driven learning techniques is proposed and validated through a motion data set. The second part addresses interaction control in human-robot collaboration. An adaptive impedance control scheme with human reference estimation is presented. Reinforcement learning is used to find optimal control parameters to minimize a task-orient cost function without fully knowing the system dynamic. The proposed framework is experimentally validated through two benchmark applications for human-robot collaboration: object handover and cooperative object handling. Results show that the robot can provide reliable online human motion prediction, react early to human motion variation, make proactive contributions to physical collaborations, and behave compliantly in response to human forces.

Distributed Optimisation for Multi-Robot Cooperative Manipulation Control in Dynamic Environments

Distributed Optimisation for Multi-Robot Cooperative Manipulation Control in Dynamic Environments PDF Author: Yanhao He
Publisher: Logos Verlag Berlin GmbH
ISBN: 3832554408
Category : Technology & Engineering
Languages : en
Pages : 188

Get Book

Book Description
Since the manipulation tasks for robotic systems become more and more complicated, multi-robot cooperation has been attracting much attention recently. Furthermore, under the trend of human-robot co-existence, collision-free motion control is now also desired on multi-robot groups. This dissertation aims to design a novel distributed optimal control framework to deal with multi-robot cooperative manipulation of rigid objects in dynamic environments. Besides object transportation, the control scheme also tackles obstacle avoidance, joint-space performance optimisation and internal force suppression. The proposed control framework has a two-layer structure, with a distributed optimisation algorithm in the kinematic layer for generating proper joint configuration references, followed by a robot motion controller in the dynamic control layer to fulfil the reference. An indirect and a direct distributed optimisation method are developed for the kinematic layer, both of which are computationally and communicationally efficient. In the dynamic control layer, impedance control is employed for safe physical interaction. As another highlight, abundant experiments carried out on a multi-arm test bench have demonstrated the effectiveness of the presented control schemes under various environmental and task settings. The recorded computation time shows the applicability of the control framework in practice.

Human-in-the-Loop Robot Control and Learning

Human-in-the-Loop Robot Control and Learning PDF Author: Luka Peternel
Publisher: Frontiers Media SA
ISBN: 2889633128
Category :
Languages : en
Pages : 229

Get Book

Book Description
In the past years there has been considerable effort to move robots from industrial environments to our daily lives where they can collaborate and interact with humans to improve our life quality. One of the key challenges in this direction is to make a suitable robot control system that can adapt to humans and interactively learn from humans to facilitate the efficient and safe co-existence of the two. The applications of such robotic systems include: service robotics and physical human-robot collaboration, assistive and rehabilitation robotics, semi-autonomous cars, etc. To achieve the goal of integrating robotic systems into these applications, several important research directions must be explored. One such direction is the study of skill transfer, where a human operator’s skilled executions are used to obtain an autonomous controller. Another important direction is shared control, where a robotic controller and humans control the same body, tool, mechanism, car, etc. Shared control, in turn invokes very rich research questions such as co-adaptation between the human and the robot, where the two agents can benefit from each other’s skills or must adapt to each other’s behavior to achieve effective cooperative task executions. The aim of this Research Topic is to help bridge the gap between the state-of-the-art and above-mentioned goals through novel multidisciplinary approaches in human-in-the-loop robot control and learning.

Advances in Computational Intelligence Systems

Advances in Computational Intelligence Systems PDF Author: Zhaojie Ju
Publisher: Springer Nature
ISBN: 3030299333
Category : Technology & Engineering
Languages : en
Pages : 556

Get Book

Book Description
This book highlights the latest research in computational intelligence and its applications. It covers both conventional and trending approaches in individual chapters on Fuzzy Systems, Intelligence in Robotics, Deep Learning Approaches, Optimization and Classification, Detection, Inference and Prediction, Hybrid Methods, Emerging Intelligence, Intelligent Health Care, and Engineering Data- and Model-Driven Applications. All chapters are based on peer-reviewed contributions presented at the 19th Annual UK Workshop on Computational Intelligence, held in Portsmouth, UK, on 4–6 September 2019. The book offers a valuable reference guide for readers with expertise in computational intelligence or who are seeking a comprehensive and timely review of the latest trends in computational intelligence. Special emphasis is placed on novel methods and their use in a wide range of application areas, updating both academics and professionals on the state of the art.

Trends in Control and Decision-Making for Human–Robot Collaboration Systems

Trends in Control and Decision-Making for Human–Robot Collaboration Systems PDF Author: Yue Wang
Publisher: Springer
ISBN: 3319405330
Category : Technology & Engineering
Languages : en
Pages : 418

Get Book

Book Description
This book provides an overview of recent research developments in the automation and control of robotic systems that collaborate with humans. A measure of human collaboration being necessary for the optimal operation of any robotic system, the contributors exploit a broad selection of such systems to demonstrate the importance of the subject, particularly where the environment is prone to uncertainty or complexity. They show how such human strengths as high-level decision-making, flexibility, and dexterity can be combined with robotic precision, and ability to perform task repetitively or in a dangerous environment. The book focuses on quantitative methods and control design for guaranteed robot performance and balanced human experience from both physical human-robot interaction and social human-robot interaction. Its contributions develop and expand upon material presented at various international conferences. They are organized into three parts covering: one-human–one-robot collaboration; one-human–multiple-robot collaboration; and human–swarm collaboration. Individual topic areas include resource optimization (human and robotic), safety in collaboration, human trust in robot and decision-making when collaborating with robots, abstraction of swarm systems to make them suitable for human control, modeling and control of internal force interactions for collaborative manipulation, and the sharing of control between human and automated systems, etc. Control and decision-making algorithms feature prominently in the text, importantly within the context of human factors and the constraints they impose. Applications such as assistive technology, driverless vehicles, cooperative mobile robots, manufacturing robots and swarm robots are considered. Illustrative figures and tables are provided throughout the book. Researchers and students working in controls, and the interaction of humans and robots will learn new methods for human–robot collaboration from this book and will find the cutting edge of the subject described in depth.

Human-Robot Collaboration

Human-Robot Collaboration PDF Author: Zoe Doulgeri
Publisher: IET
ISBN: 1839535989
Category : Technology & Engineering
Languages : en
Pages : 265

Get Book

Book Description
This book covers important advances in the area of human-robot collaboration, aiming at future industrial applications. It will be useful to advanced students, researchers, engineers and entrepreneurs working on human-robot collaboration research and technologies, and related fields.

Dynamics and Robust Control of Robot-Environment Interaction

Dynamics and Robust Control of Robot-Environment Interaction PDF Author:
Publisher:
ISBN: 9814469882
Category :
Languages : en
Pages :

Get Book

Book Description


Towards Visual-inertial SLAM for Mobile Augmented Reality

Towards Visual-inertial SLAM for Mobile Augmented Reality PDF Author: Gabriele Bleser
Publisher:
ISBN: 9783868530483
Category : Erweiterte Realität Informatik - Echtzeitbildverarbeitung - Kamera - Zielverfolgung - Merkmalsextraktion - Registrierung Bildverarbeitung
Languages : en
Pages : 176

Get Book

Book Description


Modelling Human Motion

Modelling Human Motion PDF Author: Nicoletta Noceti
Publisher: Springer Nature
ISBN: 3030467325
Category : Computers
Languages : en
Pages : 351

Get Book

Book Description
The new frontiers of robotics research foresee future scenarios where artificial agents will leave the laboratory to progressively take part in the activities of our daily life. This will require robots to have very sophisticated perceptual and action skills in many intelligence-demanding applications, with particular reference to the ability to seamlessly interact with humans. It will be crucial for the next generation of robots to understand their human partners and at the same time to be intuitively understood by them. In this context, a deep understanding of human motion is essential for robotics applications, where the ability to detect, represent and recognize human dynamics and the capability for generating appropriate movements in response sets the scene for higher-level tasks. This book provides a comprehensive overview of this challenging research field, closing the loop between perception and action, and between human-studies and robotics. The book is organized in three main parts. The first part focuses on human motion perception, with contributions analyzing the neural substrates of human action understanding, how perception is influenced by motor control, and how it develops over time and is exploited in social contexts. The second part considers motion perception from the computational perspective, providing perspectives on cutting-edge solutions available from the Computer Vision and Machine Learning research fields, addressing higher-level perceptual tasks. Finally, the third part takes into account the implications for robotics, with chapters on how motor control is achieved in the latest generation of artificial agents and how such technologies have been exploited to favor human-robot interaction. This book considers the complete human-robot cycle, from an examination of how humans perceive motion and act in the world, to models for motion perception and control in artificial agents. In this respect, the book will provide insights into the perception and action loop in humans and machines, joining together aspects that are often addressed in independent investigations. As a consequence, this book positions itself in a field at the intersection of such different disciplines as Robotics, Neuroscience, Cognitive Science, Psychology, Computer Vision, and Machine Learning. By bridging these different research domains, the book offers a common reference point for researchers interested in human motion for different applications and from different standpoints, spanning Neuroscience, Human Motor Control, Robotics, Human-Robot Interaction, Computer Vision and Machine Learning. Chapter 'The Importance of the Affective Component of Movement in Action Understanding' of this book is available open access under a CC BY 4.0 license at link.springer.com.

Designing Robot Behavior in Human-Robot Interactions

Designing Robot Behavior in Human-Robot Interactions PDF Author: Changliu Liu
Publisher: CRC Press
ISBN: 0429608373
Category : Computers
Languages : en
Pages : 236

Get Book

Book Description
In this book, we have set up a unified analytical framework for various human-robot systems, which involve peer-peer interactions (either space-sharing or time-sharing) or hierarchical interactions. A methodology in designing the robot behavior through control, planning, decision and learning is proposed. In particular, the following topics are discussed in-depth: safety during human-robot interactions, efficiency in real-time robot motion planning, imitation of human behaviors from demonstration, dexterity of robots to adapt to different environments and tasks, cooperation among robots and humans with conflict resolution. These methods are applied in various scenarios, such as human-robot collaborative assembly, robot skill learning from human demonstration, interaction between autonomous and human-driven vehicles, etc. Key Features: Proposes a unified framework to model and analyze human-robot interactions under different modes of interactions. Systematically discusses the control, decision and learning algorithms to enable robots to interact safely with humans in a variety of applications. Presents numerous experimental studies with both industrial collaborative robot arms and autonomous vehicles.