A Realizable Reynolds Stress Algebraic Equation Model

A Realizable Reynolds Stress Algebraic Equation Model PDF Author: Tsan-Hsing Shih
Publisher:
ISBN:
Category :
Languages : en
Pages : 42

Get Book

Book Description
The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.

A Realizable Reynolds Stress Algebraic Equation Model

A Realizable Reynolds Stress Algebraic Equation Model PDF Author: Tsan-Hsing Shih
Publisher:
ISBN:
Category :
Languages : en
Pages : 42

Get Book

Book Description
The invariance theory in continuum mechanics is applied to analyze Reynolds stresses in high Reynolds number turbulent flows. The analysis leads to a turbulent constitutive relation that relates the Reynolds stresses to the mean velocity gradients in a more general form in which the classical isotropic eddy viscosity model is just the linear approximation of the general form. On the basis of realizability analysis, a set of model coefficients are obtained which are functions of the time scale ratios of the turbulence to the mean strain rate and the mean rotation rate. The coefficients will ensure the positivity of each component of the mean rotation rate. These coefficients will ensure the positivity of each component of the turbulent kinetic energy - realizability that most existing turbulence models fail to satisfy. Separated flows over backward-facing step configurations are taken as applications. The calculations are performed with a conservative finite-volume method. Grid-independent and numerical diffusion-free solutions are obtained by using differencing schemes of second-order accuracy on sufficiently fine grids. The calculated results are compared in detail with the experimental data for both mean and turbulent quantities. The comparison shows that the present proposal significantly improves the predictive capability of K-epsilon based two equation models. In addition, the proposed model is able to simulate rotational homogeneous shear flows with large rotation rates which all conventional eddy viscosity models fail to simulate.

A New Reynolds Stress Algebraic Equation Model

A New Reynolds Stress Algebraic Equation Model PDF Author: Tsan-Hsing Shih
Publisher:
ISBN:
Category : Reynolds Stress
Languages : en
Pages : 34

Get Book

Book Description


Numerical Methods in Fluid Mechanics

Numerical Methods in Fluid Mechanics PDF Author: Alain Vincent
Publisher: American Mathematical Soc.
ISBN: 9780821808139
Category : Mathematics
Languages : en
Pages : 220

Get Book

Book Description
At a level comprehensible to graduate students and beginning researchers, describes the state of the art in using numerical methods for analyzing turbulence in fluids, a problem still unsolved after centuries of research. The methods described include wavelet-based, semi-Lagrangian, Langrangian multi-pole, continuous adaptation of curvilinear grids, finite volume, and shock-capturing. Among the applications are industrial flows, aerodynamics, two-phase flows, astrophysical flows, and meteorology. Suitable as a course text for graduate students with a background in fluid mechanics. No index. Annotation copyrighted by Book News, Inc., Portland, OR

Handbook of Fluid Dynamics

Handbook of Fluid Dynamics PDF Author: Richard W. Johnson
Publisher: CRC Press
ISBN: 9780849325090
Category : Technology & Engineering
Languages : en
Pages : 1962

Get Book

Book Description
This book provides professionals in the field of fluid dynamics with a comprehensive guide and resource. The book balances three traditional areas of fluid mechanics - theoretical, computational, and experimental - and expounds on basic science and engineering techniques. Each chapter introduces a topic, discusses the primary issues related to this subject, outlines approaches taken by experts, and supplies references for further information. Topics discussed include: basic engineering fluid dynamics classical fluid dynamics turbulence modeling reacting flows multiphase flows flow and porous media high Reynolds number asymptotic theories finite difference method finite volume method finite element method spectral element methods for incompressible flows experimental methods, such as hot-wire anemometry, laser-Doppler velocimetry, and flow visualization applications, such as axial-flow compressor and fan aerodynamics, turbomachinery, airfoils and wings, atmospheric flows, and mesoscale oceanic flows The text enables experts in particular areas to become familiar with useful information from outside their specialization, providing a broad reference for the significant areas within fluid dynamics.

Computation and Comparison of Efficient Turbulence Models for Aeronautics — European Research Project ETMA

Computation and Comparison of Efficient Turbulence Models for Aeronautics — European Research Project ETMA PDF Author: Alain Dervieux
Publisher: Springer Science & Business Media
ISBN: 3322898598
Category : Technology & Engineering
Languages : en
Pages : 580

Get Book

Book Description
This volume contains contributions to the BRITE-EURAM 3rd Framework Programme ETMA and extended articles of the TMA-Workshop. It focusses on turbulence modelling techniques suitable to use in typical flow configurations, with emphasis on compressibility effects and inherent unsteadiness. These methodologies are applied to the Navier-Stokes equations, involving various turbulence modelling levels from algebraic to RSM. Basic turbulent flows in aeronautics are considered; mixing layers, wall-flows (flat-plate, backward-facing step, ramp, bump), and more complex configurations (bump, aerofoil). A critical assessment of the turbulence modelling performances is offered, based on previous results and on the experimental data-base of this research programme. The ETMA results figure in the data-base constituted by all partners and organized by INRIA

Progress in Computational Flow-Structure Interaction

Progress in Computational Flow-Structure Interaction PDF Author: Werner Haase
Publisher: Springer Science & Business Media
ISBN: 3540454896
Category : Technology & Engineering
Languages : en
Pages : 381

Get Book

Book Description
Aircraft design processes require extensive work in the area of both aerodynamics and structure, fonning an environment for aeroelasticity investigations. Present and future designs of European aircraft are characterized by an ever increasing aircraft size and perfonnance. Strong weight saving requirements are met by introduction of new materials, leading to more flexible structure of the aircraft. Consequently, aeroelastic phenomena such as vortex-induced aeroelastic oscillations and moving shock waves can be predominant and may have a significant effect on the aircraft perfonnance. Hence, the ability to estimate reliable margins for aeroelastic instabilities (flutter) or dynamic loads (buffeting) is a major concern to the aircraft designer. As modern aircrafts have wing bending modes with frequencies that are low enough to influence the flight control system, demands on unsteady aerodynamics and structural analysis to predict flight control effectiveness and riding comfort for passengers are extremely high. Therefore, the aircraft industries need an improved capacity of robust, accurate and reliable prediction methods in the coupled aeroelastic, flight mechanics and loads disciplines. In particular, it is necessary to develop/improve and calibrate the numerical tools in order to predict with high level of accuracy and capability complex and non-classical aeroelastic phenomena, including aerodynamic non-linearities, such as shock waves and separation, as well as structural non-linearities, e. g. control surface free-play. Nowadays, robust methods for structural analysis and linearised unsteady aerodynamics are coupled and used by the aircraft industry to computationally clear a new design from flutter.

Workshop on Computational Turbulence Modeling

Workshop on Computational Turbulence Modeling PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 468

Get Book

Book Description


Fluid and Thermodynamics

Fluid and Thermodynamics PDF Author: Kolumban Hutter
Publisher: Springer
ISBN: 3319777459
Category : Science
Languages : en
Pages : 627

Get Book

Book Description
This third volume describes continuous bodies treated as classical (Boltzmann) and spin (Cosserat) continua or fluid mixtures of such bodies. It discusses systems such as Boltzmann continua (with trivial angular momentum) and Cosserat continua (with nontrivial spin balance) and formulates the balance law and deformation measures for these including multiphase complexities. Thermodynamics is treated in the spirit of Müller–Liu: it is applied to Boltzmann-type fluids in three dimensions that interact with neighboring fluids on two-dimensional contact surfaces and/or one-dimensional contact lines. For all these situations it formulates the balance laws for mass, momenta, energy, and entropy. Further, it introduces constitutive modeling for 3-, 2-, 3-d body parts for general processes and materially objective variable sets and their reduction to equilibrium and non-equilibrium forms. Typical (reduced) fluid spin continua are liquid crystals. Prominent nematic examples of these include the Ericksen–Leslie–Parodi (ELP) formulation, in which material particles are equipped with material unit vectors (directors). Nematic liquid crystals with tensorial order parameters of rank 1 to n model substructure behavior better, and for both classes of these, the book analyzes the thermodynamic conditions of consistency. Granular solid–fluid mixtures are generally modeled by complementing the Boltzmann laws with a balance of fluctuation (kinetic) energy of the particles. The book closes by presenting a full Reynolds averaging procedure that accounts for higher correlation terms e.g. a k-epsilon formulation in classical turbulence. However, because the volume fraction is an additional variable, the theory also incorporates ‘k-epsilon equations’ for the volume fraction.

Continuum Methods of Physical Modeling

Continuum Methods of Physical Modeling PDF Author: Kolumban Hutter
Publisher: Springer Science & Business Media
ISBN: 3662064022
Category : Science
Languages : en
Pages : 645

Get Book

Book Description
The book unifies classical continuum mechanics and turbulence modeling, i.e. the same fundamental concepts are used to derive model equations for material behaviour and turbulence closure and complements these with methods of dimensional analysis. The intention is to equip the reader with the ability to understand the complex nonlinear modeling in material behaviour and turbulence closure as well as to derive or invent his own models. Examples are mostly taken from environmental physics and geophysics.

Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 700

Get Book

Book Description
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.